
Department of Computer Science
Software Engineering and Programming Languages

Augsburg University

Merging Static Analysis and Model
Checking for Improved Security

Vulnerability Detection
Wolf-Steffen Rödiger

Master’s Thesis in the Elite Graduate Program
Software Engineering

Merging Static Analysis and Model Checking for
Improved Security Vulnerability Detection

Statische Analyse und Model Checking für eine
verbesserte Erkennung von Sicherheitslücken

Autor: Wolf-Steffen Rödiger
Matrikelnummer: 1116429
Abgabe der Arbeit: 22. Dezember 2011
Erstgutachter: Prof. Wolfgang Reif
Zweitgutachter: Prof. Alexander Knapp
Betreuer: Dr. Ralf Huuck, Ansgar Fehnker

Erklärung

Hiermit versichere ich, dass ich diese Masterarbeit selbständig verfasst habe. Ich habe dazu
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

München, den 22. Dezember 2011 Wolf-Steffen Rödiger

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection v

Acknowledgments

I am very grateful to Ralf Huuck and Ansgar Fehnker for giving me the chance to write my
master’s thesis at NICTA in Sydney. I would also like to thank the Goanna team for their
continuous support: Mark Bradley, Paul Steckler, and Dominic Gurto. Last but not least
thanks for the ever so interesting lunch topics to Robert van Glabbeek and Peter Höfner.
A special thanks to my mother for her ongoing support and the steady supply with tea,

which made this thesis possible in the first place.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection vii

Abstract

Some of the most dangerous and exploitable security problems are caused by insufficiently
validated user input. This includes command injections, path traversals, and format string
flaws which are part of the 2011 CWE/SANS list of the “Top 25 Most Dangerous Software Er-
rors”. These weaknesses have the common characteristic to pass user input obtained from an
external source to a vulnerable function without appropriate input validation. I will present
a new technique which combines data flow analysis and model checking to find weaknesses
of this kind. The data flow analysis tracks the propagation of user input in the program and
tags statements which are influenced by it. Model checking is then used in a second step to
eliminate false positives and to produce a readable counter-example trace. A summary-based
inter-procedural analysis extends the approach to problems which span multiple functions
and compilation units. It achieves an average detection rate of 86 % for applicable test cases
of the Sate IV benchmark. The analysis evaluates 1,000 lines of code in 2.3 to 7 seconds
measured on the basis of four large open source projects. My approach is easily extendable
to similar weaknesses and is built into the top notch bug finding tool Goanna.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection ix

Contents

Acknowledgements vii

Abstract ix

1. Introduction 1
1.1. Security . 1

1.1.1. Objectives . 1
1.1.2. Measures . 2

1.2. My Approach . 3
1.2.1. Integration with Goanna . 3
1.2.2. Contributions . 3

1.3. Static Program Analysis . 3
1.3.1. Areas of Application . 4
1.3.2. Discussion . 4

1.4. Outlook . 5

2. Related Work 7
2.1. Static Program Analysis for Security . 7

2.1.1. Basic Lexical Analysis . 7
2.1.2. Annotation-based Analysis . 8
2.1.3. Constraint-based Analysis . 8
2.1.4. Type-based Analysis . 9
2.1.5. Data Flow Analysis . 9
2.1.6. Model Checking . 10

2.2. Comparison . 10
2.2.1. Precision . 11
2.2.2. Scope . 12
2.2.3. Sensitivity . 13

3. Security Vulnerabilities 15
3.1. Taxonomies . 15

3.1.1. Taxonomy of Integrity Flaws (1976) . 15
3.1.2. A Taxonomy of Computer Program Security Flaws (1994) 16
3.1.3. The 19 Deadly Sins of Software Security (2005) 17
3.1.4. Seven Pernicious Kingdoms (2005) . 17
3.1.5. Common Weakness Enumeration Specification (2005) 18
3.1.6. Software Assurance Metrics and Tool Evaluation (2005) 19

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection xi

Contents

3.2. Targeted Weaknesses . 20
3.2.1. CWE 22: Path Traversal . 20
3.2.2. CWE 78: OS Command Injection . 21
3.2.3. CWE 114: Process Control . 23
3.2.4. CWE 129: Improper Validation of Array Index 24
3.2.5. CWE 134: Uncontrolled Format String 24
3.2.6. CWE 427: Uncontrolled Search Path Element 26
3.2.7. CWE 789: Uncontrolled Memory Allocation 27

4. Background 29
4.1. Data Flow Analysis . 29

4.1.1. Reaching Definitions Analysis . 29
4.1.2. Very Busy Expressions Analysis . 32
4.1.3. Monotone Frameworks . 34
4.1.4. Work List Algorithm . 36
4.1.5. Limitations . 37

4.2. Syntactic Model Checking . 37
4.2.1. Kripke Structures . 38
4.2.2. Computational Tree Logic . 38
4.2.3. Example Program . 38
4.2.4. Limitations . 39

5. Architecture 41
5.1. Preprocessing . 41
5.2. Data Flow Analysis . 42
5.3. Model Checking . 43

6. Intra-procedural Analysis 45
6.1. Running Example . 45
6.2. Data Flow Analysis . 46

6.2.1. Finding Tainted Sources . 47
6.2.2. Propagating Taints . 48
6.2.3. Locating Vulnerabilities . 50

6.3. Model Checking . 51
6.3.1. Generating the Model . 51
6.3.2. Defining Vulnerabilities as CTL Properties 51
6.3.3. Presenting Counter-Examples . 52

6.4. Improvements . 53
6.4.1. Value Range Validation . 53
6.4.2. Abstraction Refinement . 54

7. Inter-procedural Analysis 55
7.1. Running Example . 55
7.2. Finding Sources and Sinks . 58

7.2.1. Source Analysis . 58

xii Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

Contents

7.2.2. Sink Analysis . 59
7.3. Extended Taint Analysis . 60

7.3.1. Propagating Taints . 60
7.3.2. Locating Vulnerabilities . 60
7.3.3. Presenting Counter-Examples . 61

8. Evaluation 63
8.1. Sate IV Benchmark . 63

8.1.1. Test Case Design . 63
8.1.2. Preliminary Results . 65

8.2. Runtime Performance . 68
8.2.1. Dovecot 1.2.0 . 68
8.2.2. Vim 7.3 . 69
8.2.3. Ghostscript 9.02 . 69
8.2.4. Wireshark 1.2.0 . 69

8.3. Bugs in Real Software . 70
8.3.1. muh 2.05d . 70
8.3.2. wu-ftpd 2.6.0 . 71
8.3.3. CFEngine 1.5.x . 73

8.4. Tool Comparison . 75
8.4.1. ITS4, RATS, Flawfinder . 75
8.4.2. cqual . 76
8.4.3. Vulncheck . 76
8.4.4. Goanna . 77

9. Conclusion 79
9.1. Contributions . 79
9.2. Related Work . 80
9.3. Future Work . 81

A. Terminology 83

B. Knowledge Base 85
B.1. User Input Functions . 85
B.2. Vulnerable Functions . 92

C. Details for the Evaluation 109
C.1. Data Flow Variants . 109

Bibliography 113

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection xiii

1. Introduction

In 1994 it was possible to obtain a root shell on any SGI computer running the operating
system IRIX by using the following username in the login screen: [HLV05]

FRED; xterm&

This is a classic example of a command injection vulnerability caused by insufficiently
validated user input. The underlying code responsible for this problem is:

1 char buf[1024];

2 snprintf(buf, "system lpr -P %s", user_input, sizeof(buf)-1);

3 system(buf);

Listing 1.1: Vulnerable code used for user authentication in IRIX (taken from [HLV05]).

IRIX expects the user to provide an alphanumerical username but never enforces that the
input indeed meets this requirement. The login procedure does not remove meta-characters
from the input string which have a special meaning for the command line. In this case the
input FRED; xterm& contains a semicolon which separates two commands. It is appended
to the string system lpr -P in line 2 of the source code snippet. The first part of the
resulting string is a command that tries to authenticate the user. However, the part after the
semicolon is executed as a separate command. The instruction xterm& opens a new shell
with the same privileges. An unauthorized user was able to use this input in any IRIX login
screen to gain access to a root shell which implies complete control over the affected system.

1.1. Security

Security concerns the protection of systems and information.This includes their confidential-
ity, integrity, and availability. The increasing importance of the Internet and the intercon-
nection of machines have made security a key topic in computer science.
Security problems are one reason for the popularity of computer security: large numbers

of vulnerabilities are reported, potential cyber terrorism threatens states, and privacy issues
affect personal information. On the other hand, security technologies like encryption, digital
signatures, and digital cash enable new applications.

1.1.1. Objectives

The three basic goals of security are confidentiality, integrity, and availability. However, there
are several other security-related objectives. The following definitions are based on a lecture
by David Basin and Ueli Maurer [BM09].

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 1

1. Introduction

Confidentiality Information should be accessible only to those who are authorized to see
it. An attacker can exploit a SQL injection vulnerability to access confidential data. An
example for this is credit card information stored in the database of an internet shop.

Integrity Information should not be modified without proper authentication. Online bank-
ing is an example for a target of man-in-the-middle attacks. Attackers try to intercept and
redirect the communication between customers and their bank. They intend to modify bank
transfers to get hold of the money.

Availability Information and computer systems should be available when needed. This is
violated by a denial-of-service attack which makes a network resource unavailable to its users.

Authenticity A message should originate from the claimed sender. In the previous online
banking example the attacker impersonates the bank customer. Authenticity requires that
the bank is able to detect illegitimate bank transfers which do not originate from its customer.

Non-repudiation It should be impossible for the sender to deny a message. A bank customer
should not be able to deny a bank transfer and reclaim the money from a bank. The bank
should be able to proof that the customer is responsible for the money transfer.

Auditability Previous states of a system or certain aspects of it should be reconstructable.
This property is important to reconstruct an attack on a system or to reproduce the steps of
a program which led to a security failure.

Accountability An entity should be accountable for its actions. This is closely related to
non-repudiation and auditability. An entity accounts for an action if it is not able to deny it
and if this action is reconstructable.

Privacy Privacy is security applied to personal information. A person should be able to con-
trol which personal information is generated, stored, and processed, and by whom. Privacy
includes confidentiality of private information but extends to other objectives as well.

Anonymity Anonymity is an aspect of privacy which refers to hiding the identity of a person
from other entities. This obviously conflicts with authenticity and non-repudiation.

1.1.2. Measures

Several measures are employed to guarantee the before mentioned objectives. This includes
technical solutions like cryptography, organizational issues like security policies, and legal
regulations including liability and insurances.
Some of these objectives including confidentiality, integrity, availability, and authenticity

are threatened by vulnerabilities in software products. These flaws allow attackers to gain
access to secret data, modify it, crash computer systems, and spoof identities. This thesis
focuses on static analysis techniques to detect vulnerabilities early in the development process.

2 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

1.2. My Approach

1.2. My Approach

Input data is called tainted if it is provided by the end user or an unknown third party—e.g.,
over the network. The goal of my approach is to check if the tainted data can propagate
through a program until it reaches a function or statement that is vulnerable to it. These
types of vulnerabilities include some of the most common security problems such as command
injections (see 3.2.2), format string vulnerabilities (see 3.2.5), and buffer overflows (see 3.2.7).
My approach combines data flow analysis and model checking. A custom data flow analysis

propagates the taint information in a program. Afterwards we know which statements can
be influenced by user input. Model checking removes invalid paths in a second step. The
resulting analysis is fully inter-procedural, flow-sensitive, and sound with respect to its rule
set, with the exception of pointer aliasing and global variables.

1.2.1. Integration with Goanna

My approach is implemented as an extension to the bug finding tool Goanna [NIC11] de-
veloped at NICTA. Goanna applies static analysis and model checking to perform a full
path analysis of C and C++ programs. Programming errors are expressed in computa-
tional tree logic (CTL) and are checked against the labeled control flow graph (CFG) of
the program. The taint analysis presented in this work takes advantage of several advanced
features provided by the Goanna framework apart from its model checking capabilities. This
includes the elaborate pre-processing of the source code which generates the abstract syn-
tax tree and CFG. Furthermore, Goanna provides a framework to create a summary-based
inter-procedural analysis which I used for my taint analysis.

1.2.2. Contributions

My contribution is a taint analysis which is based on an extensive knowledge base of user input
functions, taint transfer functions, and vulnerable functions (see Appendix B). I developed a
generic framework for lattice-based data flow analyses and used it to specify several data flow
analyses which form the core of the taint analysis. The summary-based framework provided
by Goanna allowed me to lift my analysis to an inter-procedural level. I evaluated my
approach with the Sate IV benchmark and four large open source projects (see Chapter 8).

1.3. Static Program Analysis

My approach tackles problems similar to the introductory example using two core techniques
of static program analysis: data flow analysis and model checking. In this section I will
introduce static analysis and explain how it can be applied to detect security vulnerabilities.
A static program analysis evaluates software without executing it. This stands in contrast

to a dynamic analysis which executes the code and observes its runtime behavior. Static
analysis is performed mostly on the source code and sometimes on the object code of the
computer program. It is conducted by an automatic tool which distinguishes it from manually
performed code reviews.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 3

1. Introduction

Common techniques used in static analysis include model checking and data flow analysis.
Model checking decides if a model of a system satisfies a given property. A data flow analysis
computes information that reaches the program points of a program.

1.3.1. Areas of Application

Compiler optimizations, software metrics, bug finding, and software security are all areas
where static analysis is employed. Static analysis applied to software security aims at finding
vulnerable code patterns or control flow paths which lead to vulnerable states. A static
analyzer is a valuable tool for security audits as it contains predefined set of rules which are
tailored to check for vulnerabilities that are commonly found in software.

1.3.2. Discussion

Static analysis provides many opportunities including the detection of problems early in the
development process. However, static program analysis does not solve all problems and has
some drawbacks which have to be considered. I will address both advantages and limitations
of static program analysis in the following two sections.

Advantages Many programming errors—including missing semicolons, additional parenthe-
ses, typing errors, and more—are detected by the compiler at build time and are in turn fixed
by the programmer. This quick response to code changes stands in contrast with security
vulnerabilities which often remain undetected for years. Moreover, the longer a vulnerability
remains in the program the more expensive it can get to fix it [CM04].
Static analyzers promise to identify common security problems before the program is re-

leased and even early in development. Many issues stem from coding problems which are
repeated very often—an example is the classic null pointer dereference. A static analyzer
uses a predefined set of rules to target this kind of previously known problems.
A manual audit can be seen as a first step towards static analysis. The reviewers analyze

the source code without running the program and analyze it based on their knowledge of
common security problems. However, a code audit is time-consuming and the reviewers need
a broad and up-to-date knowledge of possible vulnerabilities. Automatic tools in comparison
offer a higher ease of use and do not require the user to have detailed security expertise.
A program can be analyzed even before it reaches a state where it would be reasonable

to begin testing. Testing requires the program to be actually run, possibly with drivers and
stubs while static analysis can be performed on separate modules or even unfinished code.
Testing needs explicit test cases to cover specific code paths. This makes it difficult to find
faults which occur only with very specific input data [Bla09]. Static analyzers have the
advantage here as they check the source code independently of any particular execution.
The following quote from Wagner et al. [WFBA00] emphasizes this important difference

between dynamic testing and static analysis:

“The fundamental problem with dynamic testing is that the code paths of
greatest interest to a security auditor—the ones which are never followed in ordi-
nary operation—are also the ones that are the hardest to analyze with dynamic
techniques.”

4 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

1.4. Outlook

Limitations Static analyzers are limited by their fixed set of rules and their model of a pro-
gram’s semantics. They often ignore complex programming language constructs like function
pointers or embedded assembler code.
Static analyzers can not guarantee the absence of bugs when they report no warnings. In

fact, there will never be a static analyzer which is able to find all security vulnerabilities in a
program without reporting spurious warnings. Static analysis problems including bug finding
are generally undecidable. They can easily be reduced to the halting problem which is proven
to be undecidable [Tur37]. Static analyzers often make simplifications or use heuristics to
overcome this. Unfortunately, either false positives, false negatives, or both are the result.
A false negative is a vulnerability which the tool doesn’t report and a false positive is a

warning about a vulnerability which is not actually present in the program. A tool is called
sound if it warns about every existing vulnerability and complete if it reports only warnings
which are in fact vulnerabilities. Therefore soundness refers to the absence of false negatives
and completeness to the absence of false positives. A tool can never be both sound and
complete according to the before mentioned undecidability of the halting problem.
Even though the predefined rule set of a static analysis tool relieves the user of the burden

to know about every possible security vulnerability, its output still needs careful evaluation:
Several software vulnerabilities were reported1 where the responsible line of code was anno-
tated to suppress a warning of a security analyzer. Apparently, a programmer erroneously
marked a correct warning as a false positive. No static analysis tool can free the user from
the task to distinguish between correct warnings and false positives. However, tools can aid
the user in this task by providing detailed information for every reported warning.
In general, static analysis tools are limited to security vulnerabilities which are part of the

source code of a program. The program’s high-level design and architecture are out of its
scope. Some very common security problems like weak passwords cannot be addressed by
static analysis at all.

1.4. Outlook

Diverse static analysis tools have been constructed which focus on security problems. The
methods include lexical analysis, annotation-based analysis, constraint systems, type systems,
data flow analysis, and model checking. Each technique is covered with a corresponding tool
in Chapter 2. Afterwards, I will compare them with respect to three important properties.
My approach aims at security vulnerabilities caused by user input similar to the example at

the beginning of this introduction. This includes format string vulnerabilities, uncontrolled
memory allocations, command injections, path traversals, and more. These weaknesses are
classified and described in Chapter 3.
I combine data flow analysis and model checking to gain the best of both worlds. The

theory behind these static analysis techniques is described in Chapter 4. The integration in
the Goanna tool is presented in Chapter 5. Chapter 6 describes the intra-procedural part
of my approach which is extended to a fully inter-procedural analysis in Chapter 7. The
resulting taint analysis is evaluated and compared to other approaches in Chapter 8. At last,
I will draw some conclusions and discuss possible future work in Chapter 9.

1Security Advisory 06.26.07 for RealPlayer, see http://www.securityfocus.com/archive/1/472295

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 5

http://www.securityfocus.com/archive/1/472295

2. Related Work

This chapter presents several approaches which apply static analysis to the security domain.
Each approach is illustrated with at least one representative tool. The different techniques are
tailored for different types of vulnerabilities which I will point out accordingly. Afterwards, I
will classify the different tools according to their precision, scope, and sensitivity to provide
a basic comparison.

2.1. Static Program Analysis for Security

This section describes tools which utilize static analysis techniques to find security vulnera-
bilities. They differ in the extent and precision of their programming language model. Early
methods deal only with the tokenized source code while later techniques consider more as-
pects of the program’s semantics. An analysis can leverage the abstract syntax tree (AST)
to obtain the basic semantics of a program. Others adopt further technologies which utilize
the control flow graph (CFG) and call graph to achieve even higher precision. The presented
techniques include type checking, constraint solving, data flow analysis, and model checking.

2.1.1. Basic Lexical Analysis

One of the first static analyzers specifically addressing security was ITS4 1. Its simple ap-
proach is based on lexical analysis. ITS4 basically tokenizes the source files and matches the
resulting token stream with predefined patterns. Flawfinder2 and RATS 3 are similar tools
which syntactically search in the program code for a predefined set of vulnerable functions.
While ITS4 and Flawfinder target C and C++, RATS is also able to analyze Perl, PHP,
and Python code. All three tools are sound with respect to their rule base but report a high
number of false positives which is a direct consequence of their simple approach.
A good example for a common vulnerability which can be addressed by lexical analy-

sis is the use of potentially insecure C functions. These functions are susceptible to buffer
overflows—e.g. strcat()—and it is recommended (Miller et al. [MdR99]) to replace them
with safer alternatives—e.g. strlcat(). Lexical analysis—while extremely fast in evalu-
ating a program—is prone to report many false positives. To follow up with the example a
variable called strcat would also trigger a warning since lexical analysis can’t distinguish
between function names and variable names. Lexical analysis further ignores the flow of val-
ues which is crucial to detect vulnerabilities caused by user input. Many security defects will
remain undetected as they require a semantic interpretation and by this a more sophisticated
approach. All three tools are included in the comparison in Section 8.4.

1It’s the Software Stupid! Security Scanner (ITS4) presented by Viega et al. in [VBKM00] in the year 2000.
2Flawfinder developed by David Wheeler in 2001 is available online [Whe11].
3Rough Auditing Tool for Security (RATS) published 2001 by Secure Software, Inc. is described in [Sec11].

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 7

2. Related Work

2.1.2. Annotation-based Analysis

LCLint4 is an annotation-based static analysis tool. It is designed to detect inconsistencies
between LCL specifications and their C implementations. It can detect null pointer derefer-
ences, dead storage, memory leaks, and other programming issues. The analysis is guided by
programmer-provided source code annotations.
Splint5 extends LCLint to the security domain. It is especially designed to discover buffer

overflow vulnerabilities but is also extendable to cover other flaws like format string bugs.
The tool requires the programmer to add annotations to their program in the form of special
C comments. Splint extends the annotation language of LCLint with more expressions to
specify function pre- and postconditions and other properties. Splint relies on these anno-
tations when it calculates the minimum and maximum indices used to access buffers. It
generates constraints from these annotations and adds them to the abstract syntax tree. The
constraints are resolved and for each violation a corresponding warning is reported.
Splint is unsound and incomplete because it reports warnings for correct code and misses

some vulnerabilities [LE01]. The biggest barrier to wide-spread adoption of an annotation-
based analysis are probably the annotations themselves. The authors of Splint conclude in
[EL02] that it might be optimistic to think that programmers are willing to add annotations
to their programs: “The effort involved in annotating programs is significant and limits how
widely these techniques will be used in the near future.”

2.1.3. Constraint-based Analysis

BOON 6 performs an integer range analysis to identify buffer overflows caused by string
manipulation function. Each string is modeled with two numbers: the amount of memory
allocated and the number of bytes currently used. All functions of the C standard library
which manipulate strings are modeled in a constraint language based on these ranges.
During the analysis the tool generates integer range constraints for each statement of a

program. The corresponding constraint system is solved afterwards by finding a minimal
bounding box solution that encloses all possible execution paths. Warnings are reported
for all statements which might violate the constraints. The author admits its “many false
alarms” [WFBA00, p. 4] which are caused by the flow- and context-insensitive nature of the
approach (see Section 2.2.3 for details).
ARCHER7 is a static analysis tool which checks for memory access errors. It operates on

the control flow graph and uses an approximation of the call graph for an inter-procedural
analysis. The tool creates constraints from conditions and checks if a memory access is unsafe
with respect to these constraints. The constraints are solved by a linear constraint solver.
The analysis developed by Xie et al. uses statistical code analysis to infer the functions

that it should analyze. The approach is context-sensitive and performs an alias analysis
for buffers. The authors state that they do not consider string operations. Zitser argues
in [ZLL04, p. 98] that ARCHER is further restricted as it ignores function pointers, uses
heuristics to analyze loops, and considers only simple range constraints.

4David Evans et al. presented LCLint 1994 in [EGHT94].
5Secure Programming Lint (Splint) was introduced by David Larochelle and David Evans 2001 in [LE01].
6Buffer Overrun detectiON (BOON) was introduced in the year 2000 by Wagner et al. in [WFBA00].
7ARray CHeckER (ARCHER) was described by Xie et al. 2003 in [XCE03].

8 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

2.1. Static Program Analysis for Security

2.1.4. Type-based Analysis

cqual8 is a framework that allows the programmer to extend the type system of C with user-
defined type qualifiers. It employs a constraint-based type-inference engine to propagate the
qualifiers. Afterwards type checking is used to reason about the program. One example given
in [FFA99] is const inference which allows the user to find the maximum number of const
annotations for the variables of an arbitrary C program.

Shankar et al. [STFW01] extended the framework to the domain of software security in
general and to find format string vulnerabilities in particular. Apart from format string
vulnerabilities, cqual is also able to check for year 2000 bugs and deadlocks.
The programmer has to annotate variables as tainted or untainted. These two type quali-

fiers indicate wether a variable is influenced by user input. The C source code and additional
configuration files containing pre-defined annotations for system libraries are used to generate
an annotated abstract syntax tree. cqual traverses the AST and propagates the annotations
with type inference. A following type check reveals format string vulnerabilities as type
inconsistencies: a tainted variable is used where an untainted variable is expected. The pro-
grammer has to annotate format string functions beforehand to accept only variables of type
untainted as their format string specifier.
The analysis is inter-procedural and can handle pointers. However, the approach is flow-

insensitive which means that a tainted variable is considered to be tainted at every statement
of a function. This can lead to taint flowing backwards from a user input function to a
vulnerable function which results in a false positive. cqual is sound modulo some restrictions
with casts. I have selected it for the evaluation in Section 8.4.

2.1.5. Data Flow Analysis

Vulncheck9 is an extension for the popular open source compiler gcc. It augments gcc with a
data flow analysis which is used to track tainted data. Vulncheck focuses on security vulner-
abilities including uncontrolled memory allocations, buffer overflows, invalid array accesses,
format string flaws, and insecure C functions. It facilitates a standard implementation of
Patterson’s algorithm to perform a value range propagation. The resulting intervals for inte-
ger variables are used to determine if a possible buffer overflow vulnerability is exploitable.
The analysis is flow-sensitive and respects the order of statements in the program. Vulncheck
performs only an intra-procedural analysis and cannot find vulnerabilities which span sev-
eral functions. This limitation stems from the integration in gcc which does not support
inter-procedural client analyses. I selected Vulncheck for the tool comparison in Section 8.4.
Livshits et al. [LL05] proposed a static analysis approach based on a pointer analysis which

finds vulnerabilities in Java web applications. They employ a tainted object propagation
which is a special data flow analysis to find sink objects which can be derived from source
objects. Their method can find SQL injection, cross-site scripting, HTTP response splitting,
path traversal, and command injection attacks. They proposed a similar approach for C
programs earlier [LL03] which is also based on an alias analysis and can find buffer overflows
and format string bugs.

8Foster et al. presented cqual in 1999 [FFA99].
9Vulncheck was developed by Alexander Sotirov and presented in his master’s thesis in 2005 [Sot05].

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 9

2. Related Work

Jovanovic et al. [JKK06] developed Pixy, a static analysis tool which detects cross-site
scripting vulnerabilities in PHP scripts. They employ a data-flow-based taint analysis. Pixy
also performs an alias analysis to handle pointers appropriately.
Several dynamic data flow analyses have been proposed as well. A dynamic taint analysis

executes a program and observes which computations are affected by user input. Flaws
are detected at runtime when tainted data is used in vulnerable functions. Schwartz et al.
describe the fundamentals of dynamic taint analysis in [SAB10]. An example for a dynamic
taint analysis is the approach by Haldar et al. [HCF05] which targets command injections,
parameter tampering, cookie poisoning, and cross-site scripting in Java web applications.
Chang et al. [CSL08] describe a similar dynamic taint analysis which targets format string

attacks, command injections, and privilege escalation in C programs. The system is based
on the Broadway compiler which integrates a data flow analysis into a program at compile
time. This small library tracks the taint status of variables during runtime and detects
vulnerabilities which are caused by untrusted data.

2.1.6. Model Checking

MOPS 10 uses model checking techniques to check for the violation of rules defined as temporal
safety properties. The intended audience of the tool are developers implementing security-
critical software and auditors conducting code reviews.
Users can define their own temporal safety properties though this might be infeasible for

users unfamiliar with finite state automata. Temporal safety properties are used to reason
about the order of security-relevant operations. MOPS has been used to detect file access race
conditions, vulnerable chroot jails, and privilege management errors as reported in [CM04].
The program under evaluation is represented as a push-down automaton and the tem-

poral safety properties are represented as finite state automata. Model checking is used to
determine if a state can be reached that violates a security goal.
MOPS takes the control flow into account but neglects data flow. It therefore allows only

to express properties that concern the order of operations. Due to this restriction the tool
cannot reason about the influence of user data and is unable to find related vulnerabilities
like format string problems. The approach is sound except for execution paths originating
from function pointers, signal handlers, and jumps. The analysis is inter-procedural.

2.2. Comparison

In this section I will compare those of the before mentioned tools which target security
vulnerabilities in C code. The comparison focuses on three key attributes of the approaches:
precision, scope, and sensitivity. A tool’s precision can be measured by its soundness and
completeness. Figure 2.1 classifies the approaches accordingly. A tool’s scope captures how
it handles the interactions of multiple functions and pointer aliasing. The approaches are
summarized with respect to their scope in Figure 2.2. A tool’s sensitivity depends on how
it models the data flow and function calls. Figure 2.3 depicts which tools are flow- and
context-sensitivity.
10MOdelchecking Programs for Security properties (MOPS) published by Chen et al. 2002 in [CW02].

10 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

2.2. Comparison

sound ITS4, Flawfinder, RATS, cqual, MOPS impossible
unsound BOON, Splint, ARCHER, Vulncheck —

incomplete complete

Figure 2.1.: Comparison of static analysis tools regarding soundness and completeness.

2.2.1. Precision

The precision of a static analyzer can be captured by the number of false positives it reports
and the number of existing issues it fails to report. Previous evaluations have tested the
detection rate of tools with respect to synthetic test cases [Kra05] and existing vulnerabilities
in software products [ZLL04]. I will restrict the comparison in this section to soundness and
completeness—the absence of false negatives respectively false positives. The comparison is
summarized in Figure 2.1.

ITS4, Flawfinder, RATS The lexical analysis tools are sound as they report all vulnera-
bilities according to their rule set. ITS4, Flawfinder and RATS are incomplete because they
report a high number of false positives.

Splint Larochelle et al. report in [LE01, p. 178] that their tool is unsound as well as
incomplete. They instead focused on reducing the number of false reports and tried not to
miss too many real vulnerabilities.

BOON Wagner et al. states in [WFBA00, p. 4] that BOON is unsound as a result of its
imprecision. The tool ignores aliasing, function pointers, and unions [WFBA00, p. 7]. The
analysis is incomplete as it reports false positives. However, the authors explain in [WFBA00,
p. 4] that the main design goal of the tool is to lower the number of unsafe string operations
which a programmer has to check manually. They claim that BOON reduces this number by
an order of magnitude.

ARCHER ARCHER approximates the call graph because it does not track function pointers
[ZLL04, p. 98] and it ignores string operations [Kra05, p. 71]. The approach is therefore
unsound. Like the other tools it reports false positives and hence is incomplete as well.

cqual Shankar et al. describe in [STFW01, p. 211] that for soundness the user is required
to annotate all potentially-vulnerable varargs functions. The approach is sound modulo the
handling of specific uncommon casts. cqual is incomplete because it reports false positives.

Vulncheck The approach by Sotirov [Sot05] is unsound because it misses vulnerabilities
which span several functions. Vulncheck is incomplete because it reports false positives.

MOPS The approach by Chen et al. is sound with the exception of function pointers, signal
handlers, and non-local jumps [CW02, p. 243] which introduce new execution paths it does
not consider. The tool is incomplete as it reports false positives.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 11

2. Related Work

inter-procedural BOON, MOPS cqual, ARCHER
intra-procedural ITS4, Flawfinder, RATS, Splint, Vulncheck —

no aliasing aliasing

Figure 2.2.: Static analysis tools classified by scope.

2.2.2. Scope

The scope of an analysis can be measured in two dimensions. The first dimension captures if
an analysis considers problems which involve several functions. An intra-procedural analysis
focuses on one function independent of the others. An inter-procedural analysis takes the
interaction of different functions into account.
The second dimension measures how the approaches model pointers. Some tools perform

a separate pointer alias analysis to achieve higher precision while others ignore pointers
completely. Figure 2.2 categorizes the approaches regarding these two dimensions.

ITS4, Flawfinder, RATS The three tools are based on pattern matching and neither model
pointer aliasing nor the interaction between functions.

Splint Splint does not facilitate the call graph and is primarily an intra-procedural approach.
It is able to perform a limited inter-procedural analysis locally when the programmer provides
additional annotations [LE01, p. 183]. Splint seems not to perform a dedicated alias analysis.

BOON The approach models function calls and thus is inter-procedural [ZLL04, p. 100].
Wagner et al. provide an example of a buffer overflow found by BOON which is caused by
the interaction of several functions [WFBA00, p. 10]. BOON cannot detect buffer overflows
caused by pointer arithmetics because it does not consider pointer aliasing [WFBA00, p. 7].

ARCHER The tool uses a bottom-up inter-procedural analysis to propagate information
across procedure boundaries [XCE03, p. 334]. ARCHER uses points-to information which is
derived using a simple per-path alias analysis algorithm [XCE03, p. 332].

cqual The type-checking approach by Shankar et al. is inherently inter-procedural since it
matches the type of a formal function parameter with the type of an actual argument. They
present a vulnerability detected by cqual which spans several functions [STFW01, p. 202].
cqual also considers pointer aliases as their type has to match exactly [STFW01, p. 205].

Vulncheck The data flow analysis used by Vulncheck is intra-procedural and analyzes func-
tions in isolation [Sot05]. The approach does not perform an alias analysis.

MOPS Chen et al. claim in [CW02, p. 244] that their approach is fully inter-procedural.
MOPS checks if any execution path through a program violates a security property, including
execution paths that span several functions. It ignores most of the data flow [CW02, p. 239]
and hence does not need to model pointer aliasing.

12 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

2.2. Comparison

flow-sensitive MOPS, Vulncheck Splint, ARCHER
flow-insensitive ITS4, Flawfinder, RATS, BOON, cqual —

context-insensitive context-sensitive

Figure 2.3.: Static analysis tools ranked with respect to flow- and context-sensitivity.

2.2.3. Sensitivity

Sensitivity describes how an analysis models functions calls and the data flow of a program.
An analysis is called context-insensitive if it does not distinguish between different calls to the
same a function. Instead the call sites are merged and the function is analyzed once with this
combined information. A context-sensitive analysis avoids the cross-over of information from
one call site to another and maintains the proper calling context. An analysis is flow-sensitive
if it considers the order of statements in the program. If the order is unimportant for the
analysis it is called flow-insensitive. Figure 2.3 compares the different tools with respect to
their sensitivity.

ITS4, Flawfinder, RATS A lexical analysis ignores different call-sites and the flow of data.
ITS4, Flawfinder and RATS are therefore context- and flow-insensitive.

Splint Splint records the locations of expressions used as actual arguments in its constraints
[LE01, p. 181]. This is an indicator for a context-sensitive analysis. Splint is flow-sensitive
as it employs a standard compiler data flow analysis [LE01, p. 183].

BOON The tool merges the information from all call sites of the same function and hence
is context-insensitive. Wagner et al. pursue a flow-insensitive approach. [WFBA00, p. 7]

ARCHER The constraint-based analysis by Xie et al. summarizes functions in constraints
and these are evaluated at all call sites with the correct context [XCE03, p. 332]. The
approach is therefore context-sensitive. The approach is based on a flow-sensitive data flow
analysis [XCE03, p. 330].

cqual The type-based approach by Shankar et al. is context-insensitive as well as flow-
insensitive [CW02, p. 243]. A tainted variable is considered to be tainted in the whole
program even before the statement that tainted it.

Vulncheck The taint analysis by Sotirov does not consider call sites and is hence context-
insensitive. Vulncheck performs a data flow analysis to determine statements where variables
are tainted and as a result is flow-sensitive.

MOPS The approach by Chen et al. is context-insensitive as it is only concerned with the
order of function calls and not their calling context. MOPS is flow-sensitive because the
order of statements is important for the analysis [CW02, p. 235].

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 13

3. Security Vulnerabilities

This chapter presents several taxonomies for security vulnerabilities. They were developed to
classify security flaws into categories based on specific characteristics. Different taxonomies
focus on different properties of the vulnerabilities. My approach targets flaws which are
caused by user input. The second part of this chapter describes weaknesses of this kind.

3.1. Taxonomies

A classification of security flaws leads to a better understanding and can also serve as a
common vocabulary for vulnerabilities. This facilitates the exchange of thoughts about se-
curity problems and avoids misunderstandings. Several classifications have been proposed
in the security domain since the 1970s. I will first introduce a classification which is of his-
torical significance and afterwards focus on those which influenced the Common Weakness
Enumeration (CWE). The U.S. National Institute of Standards and Technology (NIST) uses
the CWE taxonomy to evaluate software security tools. I will use this benchmark for the
evaluation of my approach in Chapter 8.

3.1.1. Taxonomy of Integrity Flaws (1976)

One of the earliest taxonomies for security defects originates from the Research Into Secure
Operating Systems (RISOS) project [ACD+76] conducted at the Lawrence Livermore Lab-
oratories. The project’s goal was to advise computer and systems managers to understand
security issues and to help them estimate the effort needed to improve security features. Ab-
bott et al. mention the need to protect data concerning the nation’s defense as one reason for
the project. The “Privacy Act of 1974” served as an additional motivation since it demands
that data of individuals collected by government agencies should be sufficiently protected.
They proposed the Taxonomy of Integrity Flaws which included even the physical pro-

tection of computer systems. The following list summarizes their classification of operating
systems security flaws. This part of their taxonomy consists of the following seven categories:

Incomplete Parameter Validation Addresses the insufficient validation of user input. An
attacker could exploit this to access restricted data or even crash the system.

Inconsistent Parameter Validation Similar but concentrates on cases where different parts
of the system make different assumptions about what constitutes valid input. Even
when all parts validate input correctly with respect to their assumptions, security flaws
can still occur in the interaction of those parts when their assumptions are inconsistent.

Implicit Sharing of Privileges/Confidential Data Flaws are part of this category whenever
information is not correctly isolated between users or users and the operating system.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 15

3. Security Vulnerabilities

Asynchronous Validation/Inadequate Serialization Flaws that are caused by the existence
of a timeframe between the validation and the actual use of data. An attacker could
change the data after the validation but before its use.

Inadequate Identification/Authentication/Authorization Vulnerabilities where users coun-
terfeit their identity and circumvent password checks.

Violable Prohibition/Limit Security issues concerning the violation of upper or lower limits.
The operating system should enforce limits—failing this the system might crash or data
could be lost. This category includes buffer overflows.

Exploitable Logic Error For example incorrect error handling routines where illegal actions
are performed before an error condition is signaled.

Their final report provides examples for each flaw category. They also classified 17 actual
flaws into the seven categories. Those vulnerabilities affect three operating systems: IBM
OS/MVT, UNIVAC 1100, and TENEX.
The first two of the seven categories explicitly deal with flaws caused by insufficiently

validated user input. Already in the 1970s this was seen as one of the primary reason for
security flaws.

3.1.2. A Taxonomy of Computer Program Security Flaws (1994)

The taxonomy of Landwehr et al. [LBMC94] focuses on flaws that are detected in released
software. They believe that an organization of security problems can help others to focus
their efforts to find security problems or even prevent the introduction of flaws into software.
The Taxonomy of Computer Program Security Flaws is centered around three questions:

1. How did the flaw enter the system?

2. When did it enter the system?

3. Where in the system is it manifest?

These three questions correspond to three subsections of the classification. They are the
three perspectives from which each vulnerability can be observed: genesis (how), time of
introduction (when), and location (where).
Those three dimensions are organized in a structure of subcategories of varying depth.

Flaws by genesis are broken down into intentional, and inadvertent, where the intentional
category is further split up into malicious and non-malicious. Defects by time are broken
down into development, maintenance, and operation, while the development class is itself
partitioned into requirements, source code, and object code. Vulnerabilities by location are
broken down into software and hardware, where software is redivided into operating system,
support, and application.
Landwehr et al. collected 50 actual flaws from the literature and classified them into their

taxonomy. Their work was later continued by Viega in his CLASP Application Security Pro-
cess [Vie05]. He added several perspectives in addition to genesis, time, and location including
consequence, platform, required resources, severity, likelihood of exploit, and avoidance.

16 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

3.1. Taxonomies

3.1.3. The 19 Deadly Sins of Software Security (2005)

The 19 Deadly Sins of Software Security is a list of software security problems which was
published as a book by M. Howard et al. in 2005 [HLV05]. It comprises 19 common security
defects which are illustrated with code examples.

1. Buffer overruns

2. Format string problems

3. Integer overflows

4. SQL injections

5. Command injections

6. Failure to handle errors

7. Cross-site scripting

8. Failure to protect network traffic

9. Use of magic URLs and hidden forms

10. Improper use of SSL

11. Use of weak password-based systems

12. Failure to store and protect data se-
curely

13. Information leakage

14. Trusting network address resolution

15. Improper file access

16. Race conditions

17. Unauthenticated key exchange

18. Failure to use cryptographically strong
random numbers

19. Poor usability

The list ranges from code-level problems like buffer overflows to high-level issues like weak
passwords. The book is based on a list developed by the U.S. Department of Homeland
Security. The 19 entries are claimed to account for 95 % of all security issues [HLV05].
It does not use subcategories or different dimensions to classify the security flaws further.
A recent edition adds five new issues and is therefore named “24 Deadly Sins of Software
Security” [HLV09].

3.1.4. Seven Pernicious Kingdoms (2005)

The taxonomy presented by Tsipenyuk et al. [TCM05] is tailored for “automatic identification
using static source code analysis techniques.” They view such tools as an effective teaching
mechanism for developers. Their taxonomy focuses on code-level security problems which
excludes organizational issues.
Seven Pernicious Kingdoms is based on a simple hierarchy consisting of categories—called

kingdoms—and the specific types of coding errors—named phyla. Phyla are part of the same
kingdom if they share similar characteristics.
Their main goal was to design a simple and intuitive taxonomy with only a small number of

categories. The classification is designed to be precise and consistent so that a vulnerability is
mapped to exactly one category. Other design goals include the adaptability and extensibility
of the classification as well as the suitability for source code analysis tools.
The seven kingdoms of the taxonomy ordered by importance for software security are:

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 17

3. Security Vulnerabilities

1. Input Validation and Representation User input is trusted without proper validation.
This kingdom contains buffer overflows, command injections, and SQL injections.

2. API Abuse Violations of the implicit or explicit contract between caller and callee. This
covers the chroot-jail problem and unchecked return values.

3. Security Features Misuse of security features. This kingdom is concerned with insecure
randomness and inadequate password management.

4. Time and State Problems related to threads, processes, and timing. This includes dead-
locks and race conditions.

5. Errors Insufficient error handling and errors which reveal sensitive information.

6. Code Quality Poor code quality is claimed to lead to security problems. This kingdom
comprises the double free problematic, memory leaks, and null dereferences.

7. Encapsulation Weak boundaries between trusted and untrusted data.

*. Environment This section focuses on security relevant issues outside the source code level
and is therefore separated from the other kingdoms.

Tsipenyuk et al. see their taxonomy as an alternative to highly specific collections of secu-
rity problems like the Common Vulnerabilities and Exposures (CVE) [Mit11a] or taxonomies
of attack patterns which they believe are difficult to facilitate for static analysis.

3.1.5. Common Weakness Enumeration Specification (2005)

The Common Weakness Enumeration Specification (CWE) [Mit11b] is a dictionary of soft-
ware weakness types which is maintained by the Mitre Corporation. It is designed as a
standard nomenclature for software security weaknesses and to help assess the coverage of
different software security tools.
Mitre’s first attempt at a software security taxonomy was the PLOVER list which was

in turn based on the list of Common Vulnerabilities and Exposures (CVE) [Mit11a]. The
U.S. National Institute of Technology (NIST) conducted the Software Assurance Metrics
and Tool Evaluation (SAMATE) project to extend PLOVER. The result of this effort is
the Common Weakness Enumeration Specification. It incorporates structural elements and
examples of the before mentioned taxonomies CLASP (which is turn based on the Taxonomy
of Computer Program Security Flaws), The 19 Deadly Sins of Software Security and Seven
Pernicious Kingdoms.
Each CWE entry represents a single cause for one class of software vulnerabilities. They

are organized in a hierarchical structure which allows several levels of abstraction (see Fig-
ure 3.1). Entries in higher levels (e.g. Input Validation) are categories for specific issues
below them (e.g. Command Injection). The major benefit Mitre sees in this specification
are the standardized identifiers and descriptions for the listed weakness types. Mitre claims
that CWE identifiers have been adopted as a common language to refer to security defects.
Every year the SANS Institute and the Mitre corporation rank the weaknesses from the

CWE list to obtain the CWE/SANS Top 25 Most Dangerous Software Errors which is avail-
able online. The list is designed as “a tool for education and awareness” [SM11].

18 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

3.1. Taxonomies

Root

Time of Introduction

Patch Testing

Location

Configuration CodeEnvironment

Source Code

Data Handling Security Features

Input Validation Range Errors

Injection Process Control

Command Injection

Buffer Errors

Cryptographic Issues

Motivational Intent

Intentional

Malicious

Trapdoor

Figure 3.1.: Fragment of the CommonWeakness Enumeration inspired by a figure in [Nat11a].

3.1.6. Software Assurance Metrics and Tool Evaluation (2005)

The U.S. National Institute of Standards and Technology (NIST) started the Software Assur-
ance Metrics and Tool Evaluation (Samate) project in 2005. The Samate project aims “to
help develop standard evaluation measures” [Bla05]. In 2007 the NIST decided “to work on
static source code security analyzers” [Bla07]. They determined that a standard developed
by NIST would assure developers that static analyzers are useful.
In the next step they defined what a static analyzer should do. But to assess the tools

and evaluate which tools find what flaws a taxonomy of security weaknesses was needed.
This effort led to the creation of Mitre’s Common Weakness Enumeration (CWE) [Mit11b].
The enumeration of weaknesses alone is not sufficient to test static analyzers. The Standard
Reference Dataset (SRD) [Nat11b] project consequently developed test cases for known secu-
rity flaws including synthetic test cases as well as code from actual software products. This
dataset is available online and provides a repository of flawed software for the evaluation and
development of software assurance tools.
The forth installment of the Static Analysis Tool Exposition (Sate) is currently taking

place. Goanna participates equipped with a component which facilitates the approach pre-
sented in this work. Some preliminary results are presented in Chapter 8.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 19

3. Security Vulnerabilities

3.2. Targeted Weaknesses

My approach targets several security weaknesses which all share the characteristic to pass
user input to vulnerable functions. They differ in the set of vulnerable functions as well as
the side conditions which determine if a vulnerability is exploitable. This section describes
these weaknesses with code examples, common attacks, and a collection of related real world
vulnerabilities. Appendix B.2 lists the functions that are considered for each category.

3.2.1. CWE 22: Path Traversal

A program uses external input to construct a path to a file without validating that it does
not contain malicious characters. Attackers can use special character sequences to access
files outside the intended directory. They might be able to arbitrarily traverse the file system
hierarchy and view, edit, overwrite, or delete files they are not supposed to access.
This CWE entry is split up into CWE 23 Relative Path Traversal and CWE 36 Absolute

Path Traversal. In the first case an attacker uses the character sequence ../ to traverse to
the parent directory of the current folder. In the second case the program expects a file name
relative to the current folder but the attacker provides an absolute path like /etc/passwd.
This allows the attacker to access specific files anywhere on the system.

Code Example Figure 3.2 depicts the filesystem hierarchy for the code example in List-
ing 3.1. The program initializes the path variable with the directory /tmp/sandbox/ in
line 5. The following line appends the first command line argument argv[1] to this path.
Then the file which is identified by the newly constructed path is opened in line 7 and sub-
sequently printed out character by character in line 10. Notably, the resulting path is never
checked for path-traversal directives like ../.

1 #include <stdio.h>

2 #include <string.h>

3

4 int main(int argc, char *argv[]) {

5 char path[100] = "/tmp/sandbox/";

6 strncat(path, argv[1], 50);

7 FILE *file = fopen(path, "r");

8 char c;

9 while((c = fgetc(file)) != EOF) {

10 printf("%c", c);

11 }

12 fclose (file);

13 return 0;

14 }

Listing 3.1: Example code with a path traversal vulnerability.

20 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

3.2. Targeted Weaknesses

/

. . .tmp/

. . .sandbox/

. . .tmpfile

bin/

. . .catbash

etc/

. . .passwd

Figure 3.2.: Relevant part of the filesystem hierarchy for Listing 3.1.

Attack In this example program the user should only be able to display the contents of
files located inside the /tmp/sandbox directory. However, an attacker could provide the
input string ../../etc/passwd, by this traverse the file system hierarchy and display the
operating system’s passwords file instead.
The passwd file allows the attacker to display all user accounts of the system. In older

versions of Unix operating systems this file also contains password hashes. A look-up in a
rainbow table1 could reveal the actual passwords to the attacker. A missing validation of a
filename could allow a malicious user to compromise the whole system.

Real World Examples Software products which were subject to this weakness include sev-
eral FTP servers (CVE-2009-4194, CVE-2009-4053, CVE-2009-0244), content management
systems (CVE-2009-4581, CVE-2008-5748), and chat clients (CVE-2010-0013).

3.2.2. CWE 78: OS Command Injection

The operating system command injection weakness was ranked second in the 2011 edition of
the “Top 25 Most Dangerous Software Errors” [SM11].
Attackers can exploit a command injection weakness to alter a program’s course of ex-

ecution. There are very different manifestations of command injections ranging from SQL
injections over dynamic evaluation, cross-site scripting, and file inclusion to operating system
injections. In the case of C and C++ the latter is the most common variant.
A shell injection—another common term for an operating system command injection—

often exists when a program passes user input to another executable. This weakness is
caused by the use of insufficiently validated user input to construct a system command.
Attackers can exploit meta-characters of the shell to carefully craft an input string which

allows them to execute arbitrary commands with the privileges of the affected program. An
overview of several common shell meta-characters, which could be used to such an effect, is
depicted in Figure 3.3.

1A rainbow table is used to store all possible strings which correspond to a cryptographic hash value. The
table contains a complete mapping from hash values to plaintext passwords as long as the password doesn’t
exceed a length limit and only uses certain characters.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 21

3. Security Vulnerabilities

Input String Description

> /some/file Redirects the output of the preceding command to the specified file and
by this overwrites the file if the program has sufficient privileges.

< /some/file Sets the declared file as the input for the preceding command.
; command Executes the attackers command after the preceding command.
&& command Executes the attackers command if the previous command returned

with a 0 status code indicating success.
∣∣ command Executes the attackers command if the previous command returned

with a non-zero status code indicating failure.
∣ command Pipes the output of the preceding command to the attackers command.
‘command‘ Executes the attackers command first and then passes the output as

arguments to the previous command.

Figure 3.3.: Shell meta-characters used to exploit command injection vulnerabilities.

Code Example The following example program is a very simple wrapper for the Unix cat
executable which takes a filename and returns its contents. The program is very simple but
nevertheless serves as an example for the command injection vulnerability.
In line 5 the cmd string is initialized with the absolute path to cat. The user input

obtained from a call to scanf() in line 7 is appended to the command string in line 8.
Finally, the full command string is executed with the system() function in line 9.

1 #include <stdio.h>

2 #include <string.h>

3

4 int main(int argc, char *argv[]) {

5 char cmd[100] = "/bin/cat ";

6 char filename[50] = "";

7 scanf("%50s", filename);

8 strcat(cmd, filename);

9 system(cmd);

10 }

Listing 3.2: Example code with a command injection vulnerability.

Attack If an attacker passes the argument file.txt; rm -r -f / to the program it
will not only print the contents of the file but also remove all files from the system provided
it has sufficient privileges. The attacker concatenated the command rm -r -f / with the
shell meta-character ; to the filename file.txt. This executes the attackers command
after the preceding command cat file.txt. The same flaw can also be used to overwrite
important system files by providing input of the form file.txt > /etc/passwd.

22 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

3.2. Targeted Weaknesses

Real World Examples Known examples for command injection vulnerabilities include the
Apache web server (CVE-2002-0061), the Kerberos FTP client (CVE-2003-0041), and the
dynamic web language PHP (CVE-2001-1246). These in-the-wild examples are naturally
more complicated than the code example. However, they share the same characteristic data
flow: Unvalidated user input is used to construct a shell command which is subsequently
executed with a function like system() or execl().

3.2.3. CWE 114: Process Control

A process control weakness includes a call to a function like LoadLibrary() which loads
a dynamic library and executes the contained code. This specific function is part of the
Windows operating system but similar functions exist for other platforms. If the attacker
can influence which library is loaded they can inject malicious code which is executed with
the privileges of the affected program.
One variant of the process control weakness was present in over 50 common Windows

programs [US-11]. The problem was the use of a relative path to identify the DLL file in a
call to the LoadLibrary() function. In this case the current working directory is searched
first for the library file and the system directories are considered afterwards. If the attacker
controls the working directory they can simply put a file in it which is named similar to a
system library. Consequently, the attackers file would be loaded due to the relative path.
Consider the following situation: An attacker sends a link to a remote network share which

contains several media files. Additionally, the program which is associated to their filetype is
vulnerable to a process control weakness. The directory contains a malicious library placed
there by the attacker. At the moment the user opens one of the media files the malicious
library will be loaded and executed.
Since my approach is designed for weaknesses caused by user input it cannot check for

this manifestation of a process control weakness. Instead it concentrates on cases where the
attacker is able to manipulate the filename of the library because of missing input validation.

Code Example The following example program writes the content of the environment vari-
able DLL_PATH into the variable dllname in line 6. In the next line the system loads and
executes the dynamic library which is identified by this path.

1 #include <stdlib.h>

2 #include <winbase.h>

3

4 int main(int argc, char *argv[]) {

5 char *dllname;

6 dllname = getenv("DLL_PATH");

7 LoadLibrary(dllname);

8 return 0;

9 }

Listing 3.3: Example code with a process control vulnerability.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 23

3. Security Vulnerabilities

Attack Attackers could change the environment variable before the program executes and
by this load an arbitrary library file. This allows them to execute malicious code with the
privileges of the exploited program. Consequently, environment variables are considered
external input by the taint analysis.

3.2.4. CWE 129: Improper Validation of Array Index

CWE 129 describes a weakness where user input is used to access an array. The array index
derived from the user input was not checked to be in the bounds of the array. The following
array access could therefore cause problems and even constitute a security vulnerability.

Code Example The following program uses network input to access an array. In line 6 data
is received from a socket. It is written into the character array buffer. In line 8 this string
is interpreted as an integer with the sscanf() function. In the next line the integer is used
as an index to access the options array.

1 #include <stdio.h>

2

3 char *get_option(int socket, char *options[]) {

4 char buffer[1024];

5 int index, success;

6 success = recv(socket, buffer, sizeof(buffer) - 1, 0);

7 if (!success) return;

8 sscanf(buffer, "%d", &index);

9 return options[index];

10 }

Listing 3.4: Example code with an array index vulnerability.

Attack The integer received over the network could be smaller than zero or larger than the
size of the options array. In both cases the array would be accessed outside its bounds. An
attacker could trigger this on purpose to compromise an affected application.

Real World Examples Examples where an unvalidated array index led to other security
problems include two mail clients (CVE-2001-1009, CVE-2003-0721), the MIT Kerberos se-
curity protocol (CVE-2004-1189), and the Linux kernel (CVE-2005-2456).

3.2.5. CWE 134: Uncontrolled Format String

A very subtle security problem is the format string vulnerability. It is caused by design
decisions for the C standard library which favors efficiency over security. A typical usage of a
format string would be printf("%s", message). The argument "%s" is a format string

24 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

3.2. Targeted Weaknesses

Token Description Example

%d Signed decimal integer. printf("%d", 42);
%f Decimal floating point. printf("%.2f", 2.718281828);
%s String of characters. printf("%s", "Daniel Waterhouse");
%x Unsigned hexadecimal integer. printf("%x", 0x2A);
%n Stores current character count. printf("%n", &count);

Figure 3.4.: Format tokens used by format string functions.

that specifies the number and types of the following arguments—in this case one argument
is expected which should point to the address of a character array.
The format string is not checked to match with the actual count and type of the arguments.

The following call can therefore be dangerous: printf(input). If the string input con-
tains format tokens such as %x then printf() will still try to read the next entry from the
stack and print it as an hexadecimal value. Different format tokens correspond to different
types of variables as depicted in Table 3.4.
What might be surprising is that an attacker with control over the contents of the format

string can use this to read and write arbitrary memory locations. Crucial for this is the special
format token %n. It interprets the top of the stack as an address to an integer variable and
stores the number of characters printed so far into this variable. Intricate techniques have
been developed to exploit format string functions to compromise the security of a program.
I refer to [New00] for a detailed description.

Code Example The following program authenticates the user with a password. The user is
prompted for a name and password in line 6. The user’s input and the correct password are
passed to another function in line 7. Line 10 prints the raw user name when the login failed.

1 #include <stdio.h>

2

3 void login() {

4 int level; char pwd[50];

5 char *password = "SECRET";

6 scanf("%s %s", user, pwd);

7 check(pwd, password, &level);

8 if (level < 0) {

9 printf("Login failed:");

10 printf(user);

11 }

12 do_powerful_stuff(level);

13 }

Listing 3.5: Example code with a format string vulnerability.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 25

3. Security Vulnerabilities

Attack With the use of format tokens inside the user name an attacker is able to read the
secret password and even circumvent the password check by writing to the level variable.
The attacker could provide the user name %x.%s which would print the password. The input
%x.%32d.%n would assign the value 42 to the variable level.
It is easy to prevent format string attacks by using constant format strings instead of

user-controlled variables. Format string bugs are an important security problem due to the
variety of different format string functions and the ignorance of many developers.

Real World Examples Documented format string vulnerabilities include virtual machines
(CVE-2010-1139), mail servers (CVE-2011-2475), web servers (CVE-2010-2271, CVE-2009-
4769), print servers (CVE-2010-0393), file servers (CVE-2010-0388, CVE-2009-1886), ftp
servers (CVE-2009-4775), and database systems (CVE-2009-2446, CVE-2008-5440).

3.2.6. CWE 427: Uncontrolled Search Path Element

The operating system uses the search path to determine the correct executable for a com-
mand. If attackers are able to modify the search path and add custom paths to it they could
force a program to execute malicious code.

Code Example This simplified example allows the user to directly set search path elements.
In line 5 user input is stored in the variable input. It is used in line 6 to set environment
variables. In the next line the cat command is executed to display the contents of a file.

1 #include <stdlib.h>

2

3 int main(int argc, char *argv[]) {

4 char *input;

5 scanf("%s", input);

6 dllname = putenv(input);

7 system("cat text.txt")

8 return 0;

9 }

Listing 3.6: Example code with a search path vulnerability.

Attack An attacker could add a directory to the search path which contains an alternative
binary for the cat command. This malicious program would be executed when the program
calls cat in line 7.

Real World Examples Programs vulnerable to a modified search path include text editors
(CVE-2010-3402, CVE-2001-0289), data encryption tools (CVE-2010-3397), web browsers
(CVE-2010-3131), database systems (CVE-2002-1576, CVE-2001-0943), operating systems
(CVE-1999-1318, CVE-2002-2040), and debugging tools (CVE-2005-1705).

26 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

3.2. Targeted Weaknesses

3.2.7. CWE 789: Uncontrolled Memory Allocation

A memory allocation is uncontrolled when unvalidated user input is used to determine the
amount of memory to allocate. An attacker could modify the input to allocate enormous
chunks of memory which would exhaust the resources of the system. A different but equally
dangerous attack would be to alter the input with the effect that insufficient memory is
allocated. This could lead to a successive buffer overflow.
Other weaknesses of the program can improve the attacker’s chance to exploit an uncon-

trolled memory allocation. For example if the allocation size is checked to be smaller than
a given boundary the attacker could still provide negative input which would be implicitly
cast to a large positive number (this corresponds to the weaknesses CWE 194: Unexpected
Sign Extension and CWE 195: Signed to Unsigned).

Another possibility is input which causes an integer overflow. The allocated size would
then be too small which would in turn cause a buffer overflow (this is an instance of the
weakness described in CWE 680: Integer Overflow to Buffer Overflow).

Code Example The example program receives input over the network in line 6 and inter-
prets it as an integer in line 7. This number is used as the allocation size in line 9. The
newly allocated memory is the destination buffer for a string copy operation in line 10.

1 #include <stdio.h>

2 #include <string.h>

3

4 int main(int argc, char *argv[]) {

5 int num;

6 recv(socket, buffer, sizeof(buffer) - 1, 0);

7 sscanf(buffer, "%d", &num);

8 if (num > 100) return -1;

9 char *string = malloc(num);

10 strcpy(string, other_string);

11 }

Listing 3.7: Example code with a memory allocation vulnerability.

Attack The program checks that the network input is smaller than 100 to avoid resource
exhaustion. However, the string received over the network could be a negative number which
would be implicitly cast to a big unsigned number in the call to malloc(). This would still
lead to an improper use of system resources. num could also be smaller than the length of
the character sequence other_string. This would cause a buffer overflow in line 10.

Real World Examples Uncontrolled memory allocations have caused security problems in
database systems (CVE-2008-1708), storage servers (CVE-2008-0977), and instant messaging
clients (CVE-2004-2589).

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 27

4. Background

My approach is based on two techniques from the field of static analysis: data flow analysis
and model checking. I will first introduce data flow analysis which I use to track potentially
malicious user input. Next, I will give a brief summary of syntactic model checking which
refines the results of the data flow analysis by generating counter-example paths.

4.1. Data Flow Analysis

Data flow analysis was introduced by Gary A. Kildall in [Kil73]. Today it is a standard tech-
nique used for instance in compilers to optimize programs. The general idea is to compute
for each elementary program statement a set of information which may reach it. The infor-
mation could be variable names, arithmetic expressions, or values of variables. This depends
on the objective of the specific analysis.
This section explains the principles of data flow analysis with two examples: the Reaching

Definitions Analysis and the Very Busy Expressions Analysis. They demonstrate the range
of possible data flow analyses. Afterwards I will describe the formal generalization of the
different types of data flow analyses into lattice-based Monotone Frameworks. During the
course of this chapter I will explain the differences between forward and backward analyses
as well as may and must analyses. The presentation of this section is based on the the second
edition of the book “Principles of Program Analysis” by Nielson et al. [NNH05].

4.1.1. Reaching Definitions Analysis

Figure 4.1 depicts the factorial program which computes the factorial of x and stores the
result in z. Each basic statement is uniquely labeled so I can refer to it easily. This program
will serve as an example for the analysis. Next to the program is its control flow graph (CFG)
where the statements are represented as nodes and the transitions as edges.
The Reaching Definitions Analysis computes the set of variable assignments which are

available at a program point:

The assignment k of the form [x = a;]k may be available at the entry of
statement l if there is a path of execution where x was last assigned a value at k
when statement l is reached.

This is useful to determine the connection between statements that define the value of a
variable and statements that use this value of the variable.
In this example the assignment [z = 1;]2 reaches the statement [z = z * y;]4—for

brevity I will shorten this to “(z, 2) reaches the entry of 4”. (z, 2) does not reach the the
entry of 5 since the assignment at 4 redefines z. Figure 4.2 includes the reaching definition
information for all statements of the program.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 29

4. Background

[y = x;]1

[z = 1;]2

while ([y > 1]3) {

[z = z * y;]4

[y = y - 1;]5

}

[y = 0;]6

(a) Factorial program

y = x;

z = 1;

y > 1

z = z * y; y = y - 1;

y = 0;

yes

no

(b) Control flow graph

Figure 4.1.: Factorial program with corresponding control flow graph taken from [NNH05].

Equation System An analysis like reaching definitions can be formally specified by a num-
ber of equations which are specific to the analyzed program. These equations belong to two
classes: An equation of the first kind defines what a single statement adds to and removes
from the incoming set of information to create the outgoing set of information. It models
how the statement changes the available information when executed. An equation of the
second kind describes how the incoming information is obtained from the predecessors in the
CFG. I denote the incoming set of information for statement k as INk and the outgoing set
as OUTk. For the factorial program from Figure 4.1a the equations of the first class are:

OUT1 = IN1 ∖ {(y, l) ∣ l ∈ labels} ∪ {(y,1)}
OUT2 = IN2 ∖ {(z, l) ∣ l ∈ labels} ∪ {(z,2)}
OUT3 = IN3

OUT4 = IN3 ∖ {(z, l) ∣ l ∈ labels} ∪ {(z,4)}
OUT5 = IN4 ∖ {(y, l) ∣ l ∈ labels} ∪ {(y,5)}
OUT6 = IN5 ∖ {(y, l) ∣ l ∈ labels} ∪ {(y,6)}

There is clearly a difference between the equation for statement 3 and all the others. This
is because statement 3 is a condition which does not define a variable. Therefore the set
of outgoing information is the same as the incoming. Only assignments alter the reaching
definition information.
In case of an assignment the outgoing set contains everything from the incoming set except

the previous definitions of the variable which is being assigned. These definitions can’t reach
a following program point on a path through the current statement because the variable is
redefined. In addition to removing old definitions of the assigned variable, a new definition
has to be added to the set of outgoing information.

30 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

4.1. Data Flow Analysis

k INk OUTk

1 (x, ?), (y, ?), (z, ?) (x, ?), (y, 1), (z, ?)
2 (x, ?), (y, 1), (z, ?) (x, ?), (y, 1), (z, 2)
3 (x, ?), (y, 1), (y, 5), (z, 2), (z, 4) (x, ?), (y, 1), (y, 5), (z, 2), (z, 4)
4 (x, ?), (y, 1), (y, 5), (z, 2), (z, 4) (x, ?), (y, 1), (y, 5), (z, 4)
5 (x, ?), (y, 1), (y, 5), (z, 4) (x, ?), (y, 5), (z, 4)
6 (x, ?), (y, 1), (y, 5), (z, 2), (z, 4) (x, ?), (y, 6), (z, 2), (z, 4)

Figure 4.2.: Solution of the Reaching Definitions Analysis for the factorial program.

The second class of equations describes the set of incoming information for each statement.
This is the combination of the sets of outgoing information from all its possible predecessors
in the CFG. The general form of this equation for statement k with predecessors pred(k) is:

INk = ⋃
i ∈pred(k)

OUTi (4.1)

The information from the predecessors is combined with the set union operator. Data flow
analyses differ in the operator they use to join the incoming information at a program point
as we will see when I present the Very Busy Expressions Analysis. For the factorial program
the equations describing the incoming information are:

IN2 = OUT1

IN3 = OUT2 ∪OUT5

IN4 = OUT3

IN5 = OUT4

IN6 = OUT5

There is one additional equation which is concerned with the initial statement of the
program. The value of a variable is undefined until an assignment defines it. The special
label ? is introduced to mark uninitialized variables. The resulting equation for the incoming
information of the first statement is:

IN1 = {(v, ?) ∣ v ∈ vars} = {(x, ?), (y, ?), (z, ?)}

Least Solution Together these two classes of equations define how the information flows
through the program. We can obtain the actual twelve sets IN1, . . . , IN6 and OUT1, . . . ,OUT6

by solving these equations. Section 4.1.4 describes an efficient algorithm for this task.
The solution in Figure 4.2 is the least solution to the equation system and by this the one

we are interested in. It contains the fewest pairs of reaching definitions that is consistent
with the program. We could add additional pairs of reaching definitions without making
the analysis semantically unsound, but this would make the analysis less usable. Those
superfluous definitions still “may reach the statement” but we actually know that they can’t.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 31

4. Background

4.1.2. Very Busy Expressions Analysis

The Very Busy Expressions Analysis determines the set of very busy expressions for the
statements of a program:

An arithmetic expression must be very busy at the entry of a program point when
on every possible execution path the expression is always used before any of its
variables are redefined.

Consider the example program depicted in Figure 4.3: The expressions a-b and b-a are
very busy at the entry of the condition statement. Both are used regardless of the outcome
of the condition and neither a nor b are redefined on a path before their use. The program
could be optimized based on this very busy expressions information by precomputing and
storing the value of a-b and b-a before the condition.

Forward and Backward Analyses Very busy expressions are easily computed by starting
at the expression and traversing the CFG backwards until a variable in the expression is
redefined. In this case the expression looses its very busy status by definition and has to
be removed from the set of information. The Very Busy Expressions Analysis is therefore
defined as a backward analysis. This is different to the Reaching Definitions Analysis which
propagates the information forward with respect to the CFG. A forward analysis combines
the outgoing information of the predecessors of the current program point:

INk = ⊗
i ∈pred(k)

OUTi

A backward analysis focuses on the successors instead and combines their outgoing infor-
mation:

INk = ⊗
i ∈succ(k)

OUTi

May and Must Analyses The direction is not the only difference between the two analyses.
The goal of the Very Busy Expressions Analysis is to find all expressions that must be
busy at the entry of a program point. Whereas the Reaching Definitions Analysis targets
at determining all assignment which may reach a statement. A may analysis combines the
outgoing information of the predecessors with the set union operator to collect the data flow
values which reach the program point via any execution path:

INk =⋃
i

OUTi

A must analysis uses the set intersection operator to obtain only those data flow values
which reach the program point independent of the execution path:

INk =⋂
i

OUTi

Next, I will describe a different way to define the equation system for a data flow analysis.

32 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

4.1. Data Flow Analysis

if ([a > b]1) {

[x = a - b;]2

[y = b - a;]3

} else {

[x = b - a;]4

[y = a - b;]5

}

(a) Example program

a > b

x = a - b;

y = b - a

x = b - a;

y = a - b;

yes no

(b) Control flow graph

Figure 4.3.: Example program with corresponding control flow graph taken from [NNH05].

KILL and GEN Sets Instead of listing all equations for the outgoing information as I did
for the Reaching Definitions Analysis, I will now express the equation system in terms of
KILL and GEN sets. This is a common approach to define a data flow analysis.
In the case of a Very Busy Expressions Analysis an expression is killed by a statement if

it defines a variable which is contained in the expression. I use KILLk to denote the set of
expressions killed by statement k. An expression is generated when it is contained in the
current statement. The set of expressions produced by statement k is called GENk.

The outgoing information for node k can then be described in terms of the incoming
information and the sets KILLk and GENk:

OUTk = (INk ∖KILLk) ∪GENk (4.2)

From the set of incoming information all the killed information is removed and the gen-
erated information is added. This looks very similar to the equation system listed in Sec-
tion 4.1.1. Indeed, I could describe the Reaching Definitions Analysis with KILL and GEN
sets, too. In case of the Very Busy Expressions Analysis the sets KILLk and GENk for
statement k are defined as:

GENk =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

AExpr(a), if k is an assignment[x = a;]

AExpr(b), if k is a boolean condition[b]
∅, otherwise

KILLk =

⎧⎪⎪
⎨
⎪⎪⎩

{a′ ∈ AExpr ∣ x ∈ vars(a′)} , if k is an assignment[x = a;]

∅, otherwise

Here AExp(a) and AExp(b) stand for the arithmetic expressions contained in statement
a respectively boolean condition b. AExpr is the set of all arithmetic conditions used in the
current program.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 33

4. Background

k INk OUTk

1 {a-b, b-a} {a-b, b-a}

2 {a-b, b-a} {a-b}

3 {a-b} ∅

4 {a-b, b-a} {a-b}

5 {a-b} ∅

Figure 4.4.: Solution of the Very Busy Expressions Analysis for the example program.

Largest Solution The following two equations describe the sets of incoming and outgoing
information for any backward must analysis. Together with the previous definitions of KILLk

and GENk they define the equation system for the Very Busy Expressions Analysis:

OUTk = (INk ∖KILLk) ∪GENk

INk = ⋂
i ∈succ(k)

OUTi

We are interested in the largest solution of this equation system. We could always remove
very busy expressions without rendering the solution unsound because we are interested in
the set of expressions which must be very busy. However, it is more useful to know all
expressions that are very busy. The largest fixed point solution for the example program is
depicted in Figure 4.4.

4.1.3. Monotone Frameworks

The different types of data flow analyses—may and must, forward and backward—can be
generalized in a Monotone Framework. The advantage of such a framework includes the
possibility to design generic algorithms which can be instantiated for a specific analysis and
solve the corresponding data flow equations. A data flow analysis is characterized by

1. A set of flow values L

2. A binary meet operator ⊔

3. A set of transfer functions F

Flow Values The flow values are represented as a lattice L. A lattice (L, ≼) is a partially
ordered set L of program facts with a binary operator ≼ that has to be

• reflexive: ∀x ∈ L.x ≼ x,

• transitive: ∀x, y, z ∈ L.x ≼ y ∧ y ≼ z ⇒ x ≼ z, and

• anti-symmetric: ∀x, y ∈ L.x ≼ y ∧ y ≼ x⇒ x = y.

L is a complete lattice if each subset has a least upper and a least lower bound.

34 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

4.1. Data Flow Analysis

Reaching Definitions Very Busy Expressions
L ℘(vars × labels) ℘(AExpr)
≼ ⊇ ⊆

⊔ ∪ ∩

⊺ ∅ AExp
� vars × labels ∅

Figure 4.5.: Reaching Definitions and Very Busy Expressions as Monotone Frameworks.

Meet Operator The meet operator ⊔ ∶ ℘(L)→ L combines flow values from different paths
which merge at a program point. The meet operator ⊔ has to be

• a closure on L: ∀x, y ∈ L.x ⊔ y ∈ L,

• commutative: ∀x, y ∈ L.x ⊔ y = y ⊔ x, and

• associative: ∀x, y, z ∈ L. (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z).

The meet operator is closely related to the partial order ≼ on lattice L:

∀x, y ∈ L.x ≼ y⇔ x ⊔ y = x

Transfer Functions The last component of the framework is the set of transfer functions.
The transfer function fl models the ability of statement l to modify its local information
based on the program point’s semantic approximation.

F = {fl ∶ L→ L ∣ l ∈ labels}

The transfer functions map the program behavior onto lattices. It is important for the
existence of a fixed point that each transfer function is monotone.

Discussion The elements of lattice L represent the flow values for a data flow analysis, i.e.,
the in and out sets. The Reaching Definitions Analysis operates on sets of pairs of variables
and labels; the Very Busy Expressions Analysis deals with sets of arithmetic expressions.
A complete lattice L has a unique greatest element ⊺ which represents the best case infor-

mation for a data flow analysis. In the case of a may analysis this is the empty set and for a
must analysis this is the set containing all information.
A complete lattice L also has a unique least element � which means that the data flow

analysis gained no information for this program point. For a may analysis this the set
containing all information and for a must analysis this is the empty set.
The meet operator ⊔ merges the information of preceding program points. A may analysis

uses the set union ∪ as its meet operator and a must analysis the set intersection ∩.
The set x is a conservative approximation of y if x ≼ y. For a may analysis ≼ is the superset

operator ⊇ and for a must analysis the subset operator ⊆.
Figure 4.5 phrases the Reaching Definitions Analysis and the Very Busy Expressions Anal-

ysis as lattice-based Monotone Frameworks.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 35

4. Background

4.1.4. Work List Algorithm

The following algorithm calculates the fixed point solution for any data flow analysis which is
described as a Monotone Framework. The algorithm takes the control flow graph, a direction
d which is either forward or backward, the lattice L of flow values with least element �, the
meet operator ⊔, and the transfer functions F as input. It returns the fixed point solution,
i.e., the sets of incoming and outgoing information for every node of the control flow graph.

Algorithm 1 Work list algorithm for lattice-based data flow analyses.
Input: Control flow graph, direction d, Lattice L with least element �, meet operator ⊔,
and transfer functions F

Output: IN and OUT sets for every node of the control flow graph
for all nodes n in the control flow graph do
INn ← nil
OUTn ← nil

end for
if direction d is forward then
s← first node of the control flow graph

else
s← last node of the control flow graph

end if
w.enqueue s
while work list w is not empty do
n← w.dequeue
OUT′

n ← OUTn

INn ← �

for all p ∈ predd(n) do
INn ← INn ⊔ OUTp

end for
OUTn ← fn(INn) with fn ∈ F
if OUTn ≠ OUT′

n then
for all s ∈ succd(n) do

if s ∉ w then
w.enqueue s

end if
end for

end if
end while

The algorithm starts with setting all in and out sets to undefined. This is important for a
later test which decides if the out set has changed. The algorithm needs to distinguish the
empty set from an undefined set to ensure that every node is evaluated at least once.
In the next step the start node s is defined. This is either the first or the last node of the

control flow graph depending on the direction d of the analysis. I assume without loss of
generality that every control flow graph has both a unique first and last node.

36 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

4.2. Syntactic Model Checking

The algorithm calculates the in and out sets for the current node n which is dequeued from
the work list w. First the current out set is saved for a later comparison. Then the in set is
set to the least element � of the lattice L. Now all predecessors (with respect to the direction
d) of the current node are iterated. Their sets of outgoing information are combined with the
meet operator ⊔ which yields INn. The set OUTn is obtained by applying the flow function
fn for the current node n to the set of incoming information INn.
At last, the newly calculated set of outgoing information OUTn is compared to the pre-

vious set OUT′
n. The successors of the current node (again with respect to the direction

of the analysis) depend on its set of outgoing information. Every time this set changes the
successors’ sets of information have to be calculated again. For this they are added to the end
of the work list (if they are not already part of it). During the analysis the set of outgoing
information changes for every node at least from undefined to defined. This ensures that
every node is evaluated at least once.
The algorithm stops when the work list w is finally empty. The resulting sets represent

the fixed point solution for the given data flow analysis and the current program.

4.1.5. Limitations

Standard data flow analysis has a number of limitations. The analysis is sound but the over-
approximation which occurs when the meet operator is applied to merge paths at a program
point can be significant. Furthermore, a data flow analysis does not keep track from where
flow values originate. It can therefore not present an example trace for the taint flow from a
tainted source to a vulnerable sink. A data flow analysis can only state that a vulnerability
occurs at a specific statement not how it was caused.
Most importantly, there is no good approach to refine a data flow analysis. A more detailed

lattice of facts requires a new set of transfer functions. Another possibility is to modify the
criteria when to apply the meet operator. However, this does not match the advances made
in recent years in the area of model checking.

4.2. Syntactic Model Checking

Model checking is an automatic verification technique used for checking properties of hard-
ware and software models. More formally, model checking verifies whether a modelM satisfies
a property φ which would be denoted as M ⊧ φ.
A common model used is the Kripke structure and the properties are often expressed in

one of several forms of temporal logic. I focus here on the Computational Tree Logic (CTL)
[BAMP81] which is described in one of the next sections. CTL is used to specify properties
of the Kripke structure reasoning about paths through its states and their annotations.
Goanna uses model checking to solve static program analysis problems in general and to

find bugs in software in particular. The details of how Goanna uses model checking are
described by Fehnker et al. in [FHJ+07]. The basic idea is to generate the control flow graph
(CFG) for a C/C++ program and to label the CFG with occurrences of syntactic constructs.
The labeled CFG can be seen as a Kripke structure. CTL is used to specify interesting
properties for the program using these labels. The Kripke structure and the formulae are
passed to a model checker which generates a counter-example if one of the formulae is violated.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 37

4. Background

4.2.1. Kripke Structures

A Kripke structure is a variation of a non-deterministic finite automaton introduced by Saul
Kripke in [Kri63]. Let AP be a set of atomic propositions. A Kripke structure over AP is
defined as a 3-tuple M = (S,E,µ) consisting of

• a set of states S,

• a transition relation E ⊆ S × S on these states, and

• a labeling function µ ∶ S → ℘(AP).

The labeling function µ defines for each state s ∈ S the set of atomic propositions µ(s)
which hold in s.

4.2.2. Computational Tree Logic

Computational Tree Logic (CTL) is a temporal logic. It models time as a tree-like structure
and is used to specify temporal safety and liveness properties. CTL allows the usual logical
operators ¬, ∨, ∧, ⇒, and ⇔ together with the boolean constants true and false.
CTL has two additional kinds of operators: path quantifiers A (all) and E (exists) and

temporal operators X (next), G (globally), F (finally), U (until), and W (weak until). Path
quantifiers determine the paths on which a property has to hold. This is either Aφ which
requires φ to hold on every possible path or Eφ which claims that there has to be at least
one path which satisfies φ.
A temporal operator specifies in which states of a path φ has to hold. The path formulae

Xφ, Gφ, and Fφ mean that φ has to hold in the next state, in all states, or in some state,
respectively. The formula φUψ expresses that φ holds until ψ holds. This requires that ψ
will eventually hold. Whereas φWψ includes the possibility that ψ never holds, in which
case φ has to hold forever. In CTL a temporal operator is always immediately preceded by
a path qualifier.

4.2.3. Example Program

I will demonstrate this approach with the simple example program shown in Figure 4.6b. An
important property for a program is whether its variables are always defined before they are
used. To check for this, I syntactically identify the statements in the program that declare
variables, statements that write variables, and statements that read variables. For instance,
for the variable y of Figure 4.6a I automatically label nodes with declare(y), write(y),
and read(y), as shown in Figure 4.6b.

Goanna provides a library of predefined patterns for these and other properties. The
patterns are expressed in a tree query language and are evaluated at compile time based on
the abstract syntax tree which represents the parsed code.
The following CTL formula specifies that after a declaration of y the variable is always

written before it is read:

AG (declare(y) ⇒ A (¬read(y)Wwrite(y)))

38 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

4.2. Syntactic Model Checking

int x, y;

scanf("%s", x);

if (x > 10) {

x = 10;

} else {

y = x+10;

}

malloc(y);

(a) Example program

int x, y;

scanf("%d", x);

x > 10

x = 10;

y = x+10;

malloc(y);

declare(y)

write(y)

read(y)

yes

no

(b) Annotated control flow graph

Figure 4.6.: Example program and its annotated CFG for the write-before-read property.

This CTL formula translates to “on all paths and in all states holds that when the state
declares y, then for all paths holds that y is not read until written or it is never read”. A
counter-example for this property is a path that declares y and reads it before it is defined.
The example violates the specification because there is a path on which y is used uninitialized.
The combination of syntactical patterns which label the control flow graph and CTL for-

mulae to specify corresponding properties has the advantage that the models are compact.
Both CTL and the tree query language are very expressive and can be used to describe a
broad variety of properties. Furthermore, model checking is able to automatically generate a
counter-example with a trace through the program if a property is violated. This trace helps
to explain to the user why a check failed.

4.2.4. Limitations

Model checking is insufficient to reason about data and its flow through a program. This
applies to static analysis problems like aliasing, buffer sizes, and—most important for this
work—tainted input. A standard approach would encode these properties into the finite state
model with variables that model pointers, buffers, and the taint status of data. This would
lead to a very large state space and as a result a slower analysis. With the current approach
the state space grows in practice about linearly with the number of lines. Introducing a richer
semantic model would negate this advantage.
I use a data flow analysis to approximate the data flow behavior of the program. This

produces small models which are better suited for model checking. After the data flow
analysis the model checking step generates paths which represent vulnerabilities and subjects
these paths to a closer analysis with a rich semantic state model. This includes the false
positive elimination which detects non-viable paths.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 39

5. Architecture

This chapter presents the architecture of my approach. It describes how the taint analysis
fits into the Goanna framework and the interactions between the different components. The
taint analysis consists of three main steps:

1. Preprocessing

2. Data Flow Analysis

3. Model Checking

First the source code is preprocessed to create several artifacts which are used by later
steps. Afterwards the data flow analysis propagates the taint information in the program.
At last, the model checking step generates a counter-example trace which is reported to the
user. The different parts and artifacts of my approach and the dependencies between them
are depicted in Figure 5.1.

5.1. Preprocessing

In the first step the source code is processed to obtain the abstract syntax tree. From this
the control flow graph is built. A range analysis takes the control flow graph as input and
annotates the variables with their possible ranges.

Source Code The unmodified source code is the input for the analysis. Goanna doesn’t
require the programmer to add annotations to the code, new types for variables, or any other
modifications to the original program. Goanna is called instead of the compiler. It performs
its static analysis and checks for programming errors. Afterwards, the compiler is invoked
and the program is compiled.

Abstract Syntax Tree The abstract syntax tree represents the syntactic structure of the
source code. Each node stands for a construct occurring in the code. It is different from the
parse tree as it does not represent every detail from the real syntax of the program. Therefore
it is called the abstract syntax tree.

Goanna generates the abstract syntax tree from the source code and offers the ability to
retrieve parts of it with a standard tree query language.

Control Flow Graph The control flow graph represents all paths which might be followed
during a specific execution of the program. Nodes represent statements and edges the possible
transitions of the flow of control.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 41

5. Architecture

P
re
pr
oc
es
si
ng

D
at
a
F
lo
w

A
na
ly
si
s

M
od

el
C
he
ck
in
g

Source
Code

Abstract
Syntax Tree

Control
Flow Graph

Range
Analysis

Inter-
procedural
Analysis

Intra-
procedural
Analysis

Knowledge
Base

Model
Checker

Counter-
example

False
Positive

Elimination
Warning

Figure 5.1.: Architecture of the taint analysis embedded in the Goanna model checker.

Range Analysis Goanna employs a range analysis which calculates the value ranges for
integer variables. This information is already utilized to find buffer overflows. My approach
depends on it to figure out if a vulnerability is exploitable.

5.2. Data Flow Analysis

The data flow analysis is the heart of my taint analysis. It tracks the influence of potentially
malicious user input in the analyzed program. The data flow analysis itself consists of
an intra- and an inter-procedural part. A knowledge base containing information about
vulnerabilities and user input functions provides necessary information for both analyses.

Intra-procedural Analysis The intra-procedural analysis evaluates one function at a time.
It determines sources and sinks. Afterwards, the taint information is propagated and possible
vulnerabilities are reported. The intra-procedural analysis is presented in Chapter 6.

Inter-procedural Analysis The inter-procedural analysis extracts data flow information from
the functions of the program. It determines the functions that return tainted data from user
input functions or pass one of their parameters to a vulnerable function. The inter-procedural
analysis is further described in Chapter 7.

Knowledge Base The knowledge base contains information about user input functions,
vulnerable functions, and functions which transfer taint. It contains nearly 250 entries which
classify functions of the C standard library. The knowledge base is included in Appendix B.

42 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

5.3. Model Checking

5.3. Model Checking

The results from the data flow analysis are used as the input for the model checker. The
vulnerabilities are described as CTL formula. The model checker evaluates them and gener-
ates counter-example traces. A counter-example trace is a path through the program which
violates a CTL formula. The following false positive elimination step determines counter-
examples which rely on infeasible paths. All remaining counter-examples are presented as a
warning to the programmer.

Model Checker The model checker verifies if an annotated model of a program fulfills
temporal relationships. Goanna uses the labeled control flow graph as its model of the
program and the temporal properties are expressed as CTL formula.

Counter-example Goanna automatically generates a counter-example when a CTL formula
is violated. The counter-example is represented as a path in the program. For my taint
analysis this is a trace from a user input source to a vulnerable function.

False Positive Elimination The false positive elimination removes infeasible paths. A
counter-example may be infeasible with respect to the conditions of if statements. For in-
stance when the conditions are not independent from one another the counter-example path
could include two branches which are not possible in combination.

Warning All remaining counter-examples are presented as a warning to the user. They
include the path which led to the vulnerability and a description of the problem.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 43

6. Intra-procedural Analysis

This chapter presents the multi-staged intra-procedural taint analysis. I will first define
the data flow analysis which propagates the taint through the program. Afterwards, I will
describe the syntactic model checking stage which operates on the result of the data flow
analysis to find security vulnerabilities. At last, the number of spurious warnings is reduced
with a false positive elimination.
Chapter 7 extends the intra-procedural analysis with an inter-procedural framework to

cover vulnerabilities caused by the interaction of multiple functions. The analysis presented
here examines every function in isolation and is therefore limited in the set of vulnerabilities
it can find. I will start by introducing a program which will serve as a representative example
throughout this chapter.

6.1. Running Example

I will use the following program to demonstrate my approach. The program contains several
programming errors and is subject to more than one vulnerability for the better illustration
of the taint analysis.

1 char name[100], query[50];

2 int result;

3 do {

4 scanf("%s", name);

5 unsigned int size = strlen(name);

6 if (size < 50)

7 size = 50;

8 memcpy(query, name, size);

9 result = db_lookup(query);

10 if (!result)

11 printf(name);

12 } while (!result);

Listing 6.1: Running example for the intra-procedural analysis.

This program uses scanf in line 4 to ask the user for a string which is placed into the
100 character sized array name. Next, the actual length of the input string is calculated and
checked to be of a valid size. Apparently, the programmer of the example did a simple typing
mistake and used the wrong comparison operator in line 6. He intended to ensure that size

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 45

6. Intra-procedural Analysis

is between 0 and 50 but instead enforces that size is at least 50—I will come back to this
later. In line 8 memcpy() copies size bytes of the input string from name to the character
array query which can store 50 bytes. Afterwards a database is queried with the function
db_lookup(). If this returns no result, name is printed and the user is again asked for
input until finally the query is successful.
The source code contains two severe security vulnerabilities which are caused by unvali-

dated user input. The user provides the value of the variable name. Since size is derived
from name it is also under the user’s control. These two user-controlled variables are used
as arguments to the vulnerable functions memcpy() and printf().

This combination of user input and unchecked use leads to the following vulnerabilities:

• A format string bug in line 11, which an attacker can exploit by providing dangerous
format tokens in the input string. This enables the attacker to read memory values and
potentially even execute their own code with the privileges of the vulnerable program.

• A buffer overflow in line 8 if the user input is longer than the size of the query buffer.
The overflow will overwrite the adjacent memory and is described in more detail in
Section 6.3.2.

This specific program is characteristic for a larger class of problems, namely those programs
where user or third party input enters the program and is later used without proper checking.
In the following sections I will present the details of my multi-level approach to deal with
these types of security issues. The approach combines two main analysis techniques which
in turn consist of several steps:

1. Data Flow Analysis
a) Finding tainted sources
b) Propagating taint information
c) Locating vulnerabilities

2. Model Checking
a) Generating the model using results from 1.
b) Defining vulnerabilities as CTL properties
c) Presenting counter-examples

In the following I will present each of the steps in detail.

6.2. Data Flow Analysis

The first stage of the analysis determines where external input enters the program, where
it can potentially flow, and which vulnerable statements might potentially be reached. This
requires three steps: finding user input, propagating this taint information along the control
flow, and locating vulnerable functions.
Note, that a data flow analysis alone cannot determine a path from the tainted source to

the corresponding vulnerable sink. This will be addressed in Section 6.3 where I apply model
checking to the results of the data flow analysis.

46 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

6.2. Data Flow Analysis

1 2 3 4 5 6 7

8912 10

11

yes

no

yes

no

yes

no

Figure 6.1.: CFG with node numbers that correspond to the line numbers in Listing 6.1.

6.2.1. Finding Tainted Sources

Program functions that are known to return user input are called tainted sources. I identified
more than 50 of those functions from the C standard library (see Appendix B.1 for a complete
list). The user can extend this configuration list to add missing third party functions. Once
we know which functions return potentially malicious data, we can identify and track the
variables that are likely to be under the attacker’s control.
As an example for a tainted source and how I represent it in the configuration list, consider

the scanf() function used in line 4 of Listing 6.1 which prompts the user and returns input
from stdin:

4 scanf("%s", name);

The function scanf() parses the input into tokens according to the format specifiers
contained in the first parameter. The resulting tokens are stored into the locations provided
by the additional parameters. In the example the format string contains only the specifier %s
which causes scanf() to read subsequent characters until it encounters a newline character.
The input is stored in the character array name.

After a call to scanf() all parameters starting with the second as well as its return
value are considered to be tainted. These semantics of scanf() are represented in the
configuration list of user input functions by storing the name of the function, the function
parameters that get tainted, and whether the return value gets tainted as well:

scanf ∈ InputFunctions
taintedParameters(scanf) = {2, . . . , n}

returnTainted(scanf) = true

The entries of this configuration list are retrieved by my data flow analysis to generate the
taint information which is propagated along the control flow graph.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 47

6. Intra-procedural Analysis

6.2.2. Propagating Taints

At this point of the analysis we know which variables are directly controlled by the user.
However, this is insufficient for any non-trivial security analysis which can easily be observed
in lines 4 and 5 of the example program:

4 scanf("%s", name);

5 unsigned int size = strlen(name);

The variable size depends on the value of name which is supplied by the user. As a
result the user also has control over size. Already these two lines demonstrates the need of
a data flow analysis which propagates the taint information across assignments.
I use a classic data flow analysis to determine which variables may be influenced by user

input. The information propagate by the taint analysis are the sources of user input. Tainted
sources are represented by the name of the variable and the unique identifier of the originating
user input function—for simplicity I will just use the corresponding line number in this
discussion.
I use this information later to generate a path starting at that input function and ending

at a vulnerable function. In the example program user input is assigned to the variable name
in line 4. This tainted source is therefore represented as (name, 4). The variable name is
subsequently used in an assignment to size. The generated taint information is represented
as (size, 4) because the user input still originates from the scanf() function in line 4.

Defining the Flow Equations As described in Section 4.1 the data flow equation system for
a forward may analysis is set up by defining for each node k the set of incoming information,
equation (4.1), and the set of outgoing information, equation (4.2). This requires in particular
to define for each node k the rules when new facts are generated (GENk) and old facts are
deleted (KILLk).
Taint information is generated when a variable is either tainted by an input function as

described in the previous section or when a tainted variable is used in an assignment, i.e.,
the tainted data is passed on as we saw in the example. This means:

GENk = GENassign
k ∪GENinput

k

A user input function can taint a variable either by returning tainted data or by assigning
the external input to one of its output parameters:

GENinput
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(x, k) ∣ f ∈ InputFunctions
∧ returnTainted(f)}, if k is an assignment x ∶= f(. . .)

{(xi, k) ∣ f ∈ InputFunctions
∧ i ∈ taintedParameters(f)}, if k is a function call f(. . . , xi, . . .)

∅, otherwise

Moreover, I define that in an assignment the assigned variable becomes tainted if a tainted
variable is used on the right-hand side. Using the notion use(t) to denote the set of all
variables occurring in expression t I define:

48 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

6.2. Data Flow Analysis

k INk OUTk

1 — —
2 — —
3 — —
4 (name, 4), (size, 4) (name, 4), (size, 4)
5 (name, 4), (size, 4) (name, 4), (size, 4)
6 (name, 4), (size, 4) (name, 4), (size, 4)
7 (name, 4), (size, 4) (name, 4)
8 (name, 4), (size, 4) (name, 4), (size, 4)
9 (name, 4), (size, 4) (name, 4), (size, 4)
10 (name, 4), (size, 4) (name, 4), (size, 4)
11 (name, 4), (size, 4) (name, 4), (size, 4)

Figure 6.2.: Fixed point solution for the taint analysis of Listing 6.1.

GENassign
k =

⎧⎪⎪
⎨
⎪⎪⎩

{(x, k′) ∣ ∃x′ ∈ use(t) ∧ (x′, k′) ∈ INk} if k is an assignment x ∶= t
∅, otherwise

Having covered the cases that generate taint information, I will next define when variables
are cleaned from their taint status. A variable is “killed” when it is redefined by an assignment.
Other statements do not kill taint information. Note, however, that by definition of equation
(4.2) a variable which is killed by an assignment may afterwards be generated by it again.
This happens if the right-hand side contains tainted variables or a function call that taints
its return value. I define the set of killed variables at statement k as:

KILLk =

⎧⎪⎪
⎨
⎪⎪⎩

{(x, k′) ∣ ∀k′ ∈ statements} if k is an assignment x ∶= t
∅, otherwise

Consider node 8 of the CFG depicted in Figure 6.1 which corresponds to line 8 of the
example. This node has incoming edges from node 6 and 7 so their outgoing information is
combined to obtain the incoming taint information for node 8:

IN8 = ⋃
i ∈pred(8)

OUTi = OUT6 ∪OUT7

As another example, line 5 is an assignment which redefines size and by this kills all
previous taint information regarding size. The tainted variable name is used on the right-
hand side of the assignment. This taints size again and hence (size, 4) is contained in the
set GEN5:

OUT5 = GEN5 ∪ (IN5 ∖KILL5)

= {(size, 4)} ∪ (IN5 ∖ {(size, *)})

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 49

6. Intra-procedural Analysis

Solving the Equation System The set of flow equations over all nodes is iteratively solved
until the least fixed point is reached. Since the lattice of facts is the product of a finite
number of locations and variable names and since all the flow functions are monotonic, it is
guaranteed that a fixed point will be reached.
I use an implementation of the work list algorithm explained in Section 4.1.4 to solve those

equations. The resulting fixed point solution for the example is depicted in Figure 6.2. Both
name and size are tainted by input originating from line 4. The taint status of size is
killed by an assignment in line 7.
The result of the data flow analysis reveals only which variables may be tainted since it

performs an over-approximation by using the set union as its meet operator. I will use model
checking in the second stage to eliminate warnings produced by infeasible paths. This will
keep the result more precise and reduce the number of false positives.

6.2.3. Locating Vulnerabilities

The next step is to identify if any user input is used as a parameter to a vulnerable function.
Similar to the list of user input functions the analysis also maintains a collection of vulnerable
functions. This includes format string functions, memory copy and allocation functions,
string manipulation functions, as well as the array access operator. Each entry specifies a
possible vulnerability.

At the moment I consider about 130 different functions from the C standard library (see
Appendix B.2 for a complete list). The configuration list contains the name and vulnerable
parameters for each function. The semantics of the memcpy() function for instance are
represented in the configuration list as follows:

memcpy ∈ VulnerableFunctions
vulnerableParameters(memcpy) = {3}

rangeParameter(memcpy) = 1

This means, the function memcpy() with signature memcpy(destination, source,
size) is subject to a vulnerability when user input is passed as the third parameter and
not checked to be in the bounds of the first parameter. memcpy() causes a buffer overflow
when the size parameter is larger than the size of the destination buffer.

Handing Over to Model Checking In this first stage the taint analysis computed the
potential tainted sources and vulnerable sinks as well as generating and killing locations.
The following model checking process will use some of this information to validate the actual
paths through the program. To do so, the parse tree of the program is annotated with the
tainted sources, vulnerable sinks, and the locations which kill taint information.
Figure 6.3a depicts the tainted source annotation which is added to the Ref node in the

abstract syntax tree which corresponds to the name parameter of the scanf() function.
Figure 6.3b shows the annotation which is added to the Ref node in the abstract syntax tree
which corresponds to the size parameter of memcpy() to mark it as a vulnerable sink.
Statements which kill taint information are annotated in a similar fashion.

50 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

6.3. Model Checking

FunCall

Ref

name

TaintedSource

StringConst

%s

FunRef

scanf

(a) Annotated function call to scanf().

FunCall

Ref

size

Vulnerability

Ref

name

Ref

query

FunRef

memcpy

(b) Annotated function call to memcpy().

Figure 6.3.: Annotations added to the abstract syntax tree.

6.3. Model Checking

The data flow analysis computes an over-approximation of the statements that can be affected
by user input. I use model checking to reduce the number of false positives. A valid path
leads from a tainted source to a vulnerability without encountering a taint kill on the way.
Such a path represents an exploitable vulnerability. The user is warned with the resulting
trace through the source code.

6.3.1. Generating the Model

In the previous analysis step the AST has been annotated with tainted sources, kills and
vulnerabilities. An implicit property of the data flow analysis is that after a tainted source
for variable x and before a taint kill which cleans x, x is tainted at every node in between.
This in particular means, if the analysis can find a path from a source to a vulnerability
without any corresponding kill in between, this will be a path along which the variable is
tainted at all nodes. I consider this to be a valid path.
Translating the existing information into a Kripke structure for model checking, i.e., for

finding a path as above, is straightforward: The CFG is directly translated into the transition
structure of the Kripke model and the CFG nodes are labeled with their corresponding labels
from the AST. The resulting labeled CFG of the example program is shown in Figure 6.4.
We see that node 4 is a tainted source, node 8 and node 11 are vulnerabilities, and that the
assignment at node 7 kills the taint for size.

6.3.2. Defining Vulnerabilities as CTL Properties

As mentioned above, we like to find a path from a source to a sink without an intermediate
kill. Moreover, the model checker should generate the path for us as a counter-example. This
means, we check for the negation of the above, i.e., that there is no path from a source to
a matching sink without some intermediate kill. Should this be violated, the model checker
will automatically generate the path we originally were looking for. This is formalized as:

AG (TaintedSource⇒AX (A (¬Vulnerability)WTaintKill))

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 51

6. Intra-procedural Analysis

1 2 3 4 5 6 7

8912 10

11

TaintedSource TaintKillsize

Vulnerabilitysize

Vulnerabilityname

yes

no

yes

no

yes

no

Figure 6.4.: CFG with a valid (dotted) and a spurious (dashed) path to Vulnerabilitysize.

The CTL specifies that on all paths every node is either not labeled with TaintedSource
or for all following nodes holds that there is never a node labeled Vulnerability until a node
is labeled TaintKill or there is never a node labeled Vulnerability. Of course, the actual
CTL formula is slightly more complex since the TaintKill has to correspond to the variables
reaching the Vulnerability and also the TaintedSource has to match the Vulnerability. As a
result we will have one CTL formula for every occurrence of a vulnerable sink.

6.3.3. Presenting Counter-Examples

When the model checker determines that the CTL formula is not valid for the given Kripke
structure it will report a counter-example. Because of the high level of abstraction where
branching is interpreted as non-deterministic choice, this path might still be spurious. I will
address this in the next section.
As for the example program two paths are reported to the user: The first path starts at the

scanf() function in line 4 and ends with the use of name within the printf() function in
line 11. The second path also starts at the scanf function, takes the false branch—by this
skipping line 7—and ends with the use of size as the third argument for the memcpy()
function in line 8. The output generated by Goanna for the second path is as follows:

vuln.c:8: User-controlled variable ‘size’ used as size parameter

1: main -

2: main -

3: main -

4: * main - reference to variable ‘name’

5: main -

6: * main - take the False branch

8: * main - reference to variable ‘size’

52 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

6.4. Improvements

This path is depicted by the dotted arrow in Figure 6.4. The other path represented by
the dashed arrow takes the true branch instead. It leads from the tainted source over a taint
kill to the vulnerability. The model checker did not report the dashed path because it does
not violate the CTL formula which required the path to always contain a relevant taint kill
(remember that a vulnerability has to violate the CTL formula).
Both the dotted path and any path to node 11 represent severe vulnerabilities that enable

an attacker to compromise the system. The first issue is a format string bug that can be ex-
ploited by providing dangerous format tokens to the input string as described in Section 3.2.5.
The other vulnerability is a potential buffer overflow. If the user input in line 4 is longer
than the size of the query buffer it will overflow and memcpy() will overwrite the adjacent
memory. Buffer overflows have a long history and are ranked as the third most dangerous
vulnerability in the current CWE/SANS list [SM11].

6.4. Improvements

The Goanna comes with two techniques to reduce the number of spurious warnings which
increases the precision of my taint analysis. The first is an additional interval abstract
interpretation that is performed before the other analysis steps. The other improvement is
the integration into an existing abstraction refinement framework. I will briefly outline both
approaches in the following two sections.

6.4.1. Value Range Validation

As a first step in the improved analysis Goanna runs an interval abstraction interpretation
[Cou81]. As a result the integer variables are annotated with their potential value ranges for
every relevant node in the CFG. I make use of this information to see if certain vulnerabilities
are in fact false positives, because the developer appropriately checked the tainted data before
using it.
The developer of my original example simply used the wrong comparison operator in their

check of the size variable in line 6. Consider the following modification to the example
which replaces the comparison operator < with >:

6 if (size > 50)

7 size = 50;

By correcting the original mistake size is always less than or equal to 50. The interval
abstract interpretation will be able to also derive this fact. Hence, while the user still has
control over the actual value of size, there is nonetheless no longer a security issue in the
memcpy() call because size is checked to be smaller than the size of query. A buffer
overflow is successfully prevented by user input validation.
My analysis utilizes the value range analysis to avoid certain false positives. In this specific

example it would know that the lower and upper bound of size are valid to access the
destination buffer. The warning corresponding to the dotted arrow in the CFG of the running
example disappears after this modification of the source code.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 53

6. Intra-procedural Analysis

6.4.2. Abstraction Refinement

The model of abstraction for a standard data flow analysis is fixed by the definition of
its transfer functions. There is no straightforward way to include additional information
about loop bounds and conditionals into this model. In the area of model checking program
refinement is extensively used to balance between a precise semantic model and a fast analysis.
Goanna provides a refinement for my analysis which can automatically identify spurious

vulnerabilities which correspond to impossible execution paths. An analysis which is based
solely on the CFG would create counter-examples including such infeasible paths. One pos-
sible approach to prevent this is counter-example guided abstraction refinement (CEGAR),
as used in [HJMS03, CKSY05]. The Goanna team presented a different approach in [FHS10]
which computes a precise least solution of an interval equation system. This is computation-
ally faster, at the expense of some precision.
The idea is to subject counter-examples to an interval abstract interpretation and check

for the feasibility of the path. If the path is infeasible the model is refined with observer
automata reflecting the minimal cause for it. The analysis is re-run until a bug disappears
or no more infeasible counter-examples occur. The approach is implemented in the Goanna
tool which is the foundation of my taint analysis.
Independent of the exact abstraction refinement approach used, program refinement works

very well with model checking and is something that is not straightforward to achieve with
the classical data flow framework.

54 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

7. Inter-procedural Analysis

The inter-procedural analysis extends the taint analysis presented in the previous chapter
to vulnerabilities which span several functions. It builds upon a summary-based framework
provided by Goanna. The analysis determines which functions pass their parameters to a
vulnerable function and are itself vulnerable functions as a result. The other part of the
analysis detects functions which return external input and are therefore considered to be
user input functions in turn. The resulting function summaries are stored in a database and
used to augment the taint analysis.

7.1. Running Example

I will illustrate the approach with an example program that prints the contents of a file. It
spans three files and consists of five functions. The source code contains at least two serious
security vulnerabilities. The call graph for the program is depicted in Figure 7.1.
The file main.c contains the main() function which is the starting point for the example.

It passes the input returned from getFile() in line 7 to printFile() in line 10:

1 #include <stdio.h>

2 #define LOG_INFO 6

3

4 int main(int argc, char *argv[]) {

5 char *file;

6 printf("Please enter filename:\n");

7 getFile(&file);

8 syslog(LOG_INFO, "Printing the lines of the file ");

9 syslog(LOG_INFO, file);

10 printFile(file);

11 }

Listing 7.1: Running example for the inter-procedural analysis, file main.c.

The filename returned by getFile() is used as a format string for the vulnerable function
syslog() in line 9. This is the first of two security flaws.

The function getFile() is defined in input.c. It calls the function getInput() in
line 12 which returns external input obtained via the C library function scanf() in line 5.
The input is assigned to the in variable which is subsequently assigned to loop1 and loop2
after two loop iterations. Finally, loop2 is assigned to the out parameter out in line 17.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 55

7. Inter-procedural Analysis

1 #include <stdio.h>

2 char storage[50];

3

4 char *getInput() {

5 scanf("%50s", storage);

6 return storage;

7 }

8

9 void getFile(char **out) {

10 char *in, *loop1, *loop2;

11 int iterations = 2;

12 in = getInput();

13 do {

14 loop2 = loop1;

15 loop1 = in;

16 } while (iterations-- > 0);

17 *out = loop2;

18 }

Listing 7.2: Running example for the inter-procedural analysis, file input.c.

The function printFile() is included in the file print.c. The parameter file is con-
catenated to the variable command in line 9. This variable is used as an argument to
runCmd() in line 10. The function runCmd() is a wrapper for the C standard library
function system() which executes its argument as a system command.

1 #include <string.h>

2

3 void runCmd(char *cmd) {

4 system(cmd);

5 }

6

7 void printFile(char *file) {

8 char command[100] = "cat ";

9 strncat(command, file, 50);

10 runCmd(command);

11 }

Listing 7.3: Running example for the inter-procedural analysis, file print.c.

56 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

7.1. Running Example

main.c

input.c print.c

syslog()

main()

getFile()

getInput()scanf()

printFile()

runCmd() system()

Figure 7.1.: Call graph for the running example depicted in Listings 7.1, 7.2, and 7.3.

The user input which is returned by scanf() is in turn returned by getInput() and
getFile(). It is then used as a format string in a call to syslog(). Afterwards it
is handed over to printFile() which again passes it to runCmd() where it is finally
executed with system(). The example program is subject to two severe security flaws:

• A format string vulnerability in line 9 of the file main.c. The user input returned by
getFile() is used as a format string in a call to syslog(). An attacker can exploit
this vulnerability to read and write the main memory by providing dangerous format
tokens in the input (see Section 3.2.5).

• A command injection in line 10 of the same file because external input is passed to
printFile() which is at some point executed as a command with system(). An
attacker can use special shell meta-characters to execute arbitrary commands with the
privileges of the affected program (see Section 3.2.2).

The inter-procedural analysis is divided into two steps:

1. Determine Sources and Sinks

a) Source Analysis

b) Sink Analysis

2. Extended Taint Analysis

a) Propagating taints

b) Locating Vulnerabilities

c) Presenting counter-examples

First, we will determine which functions in the program are tainted sources and vulnerable
sinks. The functions are annotated accordingly. Second, the taint analysis described in the
previous chapter is augmented with these annotations.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 57

7. Inter-procedural Analysis

Function Return Tainted Tainted Parameters
getInput() yes ∅

getFile() no {1}

Figure 7.2.: Function summaries for tainted sources.

7.2. Finding Sources and Sinks

The analysis consists of two data flow analyses which determine the tainted source and vulner-
able sink functions of the analyzed program. Sinks are functions which pass their parameters
to vulnerable sinks and sources are functions which return input of tainted sources. Both the
source and the sink analysis are performed according to a topological order of the call graph
(breaking loops if needed) and repeated until no new annotations are added.

7.2.1. Source Analysis

Functions do not always call user input functions directly. Often the external input is passed
through several intermediary functions. The source analysis aims at finding all functions
which return user input—directly or indirectly. It is defined as a data flow analysis which
is very similar to the taint analysis presented in Chapter 6. The result of the analysis are
annotations to the return value and out parameters of a function which denote if they return
tainted data.
The source analysis first locates tainted sources in the current function which are either

predefined user input functions from the C standard library or other functions of the program
which were annotated by a previous run of the source analysis. Afterwards the taint is
propagated in the function with a forward may data flow analysis until a fixed point is
reached. At last, all possible return values and out parameters are tested for their taint
status. Annotations are created accordingly. The source analysis is run for each function of
the program until a fixed point is reached.
The definition of the set of generated taint information for node k is extended with GENDB

k :

GENk = GENassign
k ∪GENinput

k ∪GENDB
k

The generated information from user input functions and assignments is the same as in
the intra-procedural analysis. I will only define the taint information generated by transitive
tainted sources:

GENDB
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(x, k) ∣ f ∈ DB
∧ returnTainted(f)}, if k is an assignment x ∶= f(. . .)

{(xi, k) ∣ f ∈ DB
∧ i ∈ taintedParameters(f)}, if k is a function call f(. . . , xi, . . .)

∅, otherwise

Figure 7.2 depicts the annotations added for transitive tainted sources in for the example.
The function getInput() returns input from scanf() and is invoke by getFile(). The
tainted data returned by getInput() reaches the first parameter of getFile().

58 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

7.2. Finding Sources and Sinks

Function Vulnerable Parameters Vulnerability Type
runCmd() {1} Command Injection
printFile() {1} Command Injection

Figure 7.3.: Function summaries for vulnerable sinks.

7.2.2. Sink Analysis

External input is not always used directly in a vulnerable function. Often the user input is
passed through several intermediary functions until it is finally used, which then results in a
vulnerability. The sink analysis aims at detecting all functions which pass their parameters
to a vulnerable function—either directly or indirectly.
The sink analysis first locates vulnerable sinks and the variables which are used as their

arguments. Then a forward may data flow analysis propagates the parameters of the current
function along the control flow graph. Afterwards, annotations are added to those parameters
which reach an argument of a vulnerable function.
I will define the data flow analysis with GENk and KILLk sets for each statement k.

GENk is split into the information generated by parameter declarations GENparameter
k and

the information propagated by assignments GENassign
k :

GENk = GENassign
k ∪GENparameter

k

A parameter declaration k for parameter p generates (p, k):

GENparameter
k =

⎧⎪⎪
⎨
⎪⎪⎩

{(p, k) ∣ p ∈ parameters}, if k is the declaration of p
∅, otherwise

Assignments simply propagate the influence of a parameter. If a variable is used on the
right-hand side of an assignment which is influenced by a parameter then the variable on the
left-hand side is influenced as well:

GENassign
k =

⎧⎪⎪
⎨
⎪⎪⎩

{(x, k′) ∣ ∃x′ ∈ use(t) ∧ (x′, k′) ∈ INk} if k is an assignment x ∶= t
∅, otherwise

The influence of paremeters is killed when a variable is redefined:

KILLk =

⎧⎪⎪
⎨
⎪⎪⎩

{(x, k′) ∣ ∀k′ ∈ statements} if k is an assignment x ∶= t
∅, otherwise

The sink analysis terminates after no new annotations are added to the database. Fig-
ure 7.3 shows the annotations for the running example. The function runCmd() passes
its first parameter to system() which is vulnerable for command injection attacks. The
function printFile() calls runCmd() with an argument that is influenced by its first
parameter. Both functions are annotated as vulnerable functions.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 59

7. Inter-procedural Analysis

main.c

input.c print.c

main()

getFile()

getInput()

printFile()

runCmd()

Source

Source

Sink

Sink

Figure 7.4.: Call graph for the running example annotated with sources and sinks.

7.3. Extended Taint Analysis

Figure 7.4 shows the call graph of the running example with the annotations for source and
sink functions. The intra-procedural taint analysis is augmented with this information. It
does not only consider predefined functions from the C standard library as tainted sources
but also functions of the program which are annotated accordingly. The same is true for
vulnerable functions.

7.3.1. Propagating Taints

The taint propagation step of the taint analysis is extended with GENDB
k . This set generates

taint information for functions of the program which are annotated as tainted sources.

GENk = GENassign
k ∪GENinput

k ∪GENDB
k

The definition of set KILLk does not change:

KILLk =

⎧⎪⎪
⎨
⎪⎪⎩

{(x, k′) ∣ ∀k′ ∈ statements} if k is an assignment x ∶= t
∅, otherwise

The taint propagation step propagates taint not only from scanf() in the getInput()
function but also the taint returned by getInput() in the getFile() function and the
taint returned by getFile() in the main() function.

7.3.2. Locating Vulnerabilities

The annotations for vulnerable functions are considered when vulnerable sinks are located
after the taint propagation. Additional to the call to system() in the runCmd() function,
the taint analysis considers the call to runCmd() in the printFile() function and the
call to printFile() in the main() function.

60 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

7.3. Extended Taint Analysis

7.3.3. Presenting Counter-Examples

Goanna warns about the two previously mentioned security vulnerabilities in the running
example. Both flaws are caused by user input returned by scanf() which is in the one case
used as a format string for syslog() and in the other case as an argument to system().
The warnings contain a trace in the main() function because this is the function where

user input is returned from a source function and passed to a vulnerable sink.

Goanna - analyzing file main.c

Number of functions: 1

main.c:9: warning: Goanna[SEC-format-string] User-controlled

variable ‘file’ used as format string

5: main -

6: main -

7: * main - the address of ‘file’

8: main -

9: * main - reference to variable ‘file’

main.c:10: warning: Goanna[SEC-command-injection] User-controlled

variable ‘file’ executed as system command

5: main -

6: main -

7: * main - the address of ‘file’

8: main -

9: main -

10: * main - reference to variable ‘file’

Total runtime : 0.03 seconds

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 61

8. Evaluation

This chapter evaluates my approach with respect to its detection rate, runtime performance,
and the ability to find real world bugs. The first section presents preliminary results for the
Sate IV benchmark which measures the accuracy of the analysis. I evaluated the runtime
performance of my analysis with four large open source projects in the next section. The
code base of the four projects ranges from 150,000 to 1.8 million lines of code. The third
section describes the ability of the analysis to find real vulnerabilities with known security
flaws selected from the Common Vulnerabilities and Exposures database.
The results for the detection rate of the analysis are not very expressive on their own.

Therefore I tested other tools with selected test cases of the Sate IV benchmark. This
allows me to compare my approach with other methods in the last section of this chapter.

8.1. Sate IV Benchmark

Sate IV is the fourth installment of a yearly evaluation conducted by the U.S. National
Institute of Standards and Technology (NIST). It is part of the Samate program (see Sec-
tion 3.1.6) which focuses on the application of static analysis to the security domain. Sate IV
was developed to evaluate static analysis tools which target security vulnerabilities.
The benchmark is based on a large testbed of automatically generated test cases which

target specific weaknesses. Some of the test cases are purely intra-procedural while others
are designed to span several functions. I selected those weaknesses which are relevant to my
taint analysis and will present the results in terms of false positives and false negatives. A
comparison with other tools in Section 8.4 puts the results of my approach in context.

8.1.1. Test Case Design

A Sate IV test case combines a user input function and a vulnerable function in the presence
of a data flow variant. User input functions and vulnerable functions vary for the different
weaknesses but the data flow variants stay the same. Every possible combination of these
three elements is generated and as a result some of the weaknesses have over a thousand
associated test cases. I evaluated my approach with the test cases that belong to the following
twelve CWE entries (some of which are described in Section 3.2):

• External Control of System or Configuration Setting (CWE 15)

• Path Traversal (CWE 22)

• Absolute Path Traversal (CWE 36)

• OS Command Injection (CWE 78)

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 63

8. Evaluation

• Process Control (CWE 114)

• Improper Validation of Array Index (CWE 129)

• Uncontrolled Format String (CWE 134)

• Unexpected Sign Extension (CWE 194)

• Signed to Unsigned (CWE 195)

• Uncontrolled Search Path Element (CWE 427)

• Integer Overflow to Buffer Overflow (CWE 680)

• Uncontrolled Memory Allocation (CWE 789)

The selected weaknesses are covered by a total of 12,801 different test cases. The number
of test cases varies significantly between different weaknesses. This ranges from only 19 test
cases for CWE 15 to 3,700 test cases associated with CWE 78.

Example The following test case belongs to CWE 680 Integer Overflow to Buffer Overflow.
It is intra-procedural with a bad() and a good() function. The data variable is tainted by
fgets() and used in the vulnerable function malloc(). The loop adds some complexity.

1 void bad() {

2 int data = -1;

3 for (int i = 0; i < 1; i++) {

4 char input_buf[512] = "";

5 fgets(input_buf, 512, stdin);

6 data = atoi(input_buf);

7 }

8 malloc(data * sizeof(int));

9 }

10

11 void good() {

12 int data = 20;

13 for (int i = 0; i < 0; i++) {

14 char input_buf[512] = "";

15 fgets(input_buf, 512, stdin);

16 data = atoi(input_buf);

17 }

18 malloc(data * sizeof(int));

19 }

Listing 8.1: Modified and shortened test case which belongs to the Sate IV benchmark.

64 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

8.1. Sate IV Benchmark

True Positives

77%

False Negatives

23%

(a) Warnings issued for 77 % of the bad functions.

True Negatives

72%

False Positives

28%

(b) Warnings issued for 28 % of the good functions.

Figure 8.1.: Visualization of the warnings for bad() and good() functions respectively.

Large user input could cause an integer overflow in the calculation in line 8. As a result
the amount of memory allocated would be too small. This could lead to a buffer overflow
later on in the execution of the program. The allocation in line 18 is not vulnerable because
the variable data is always 20. The for loop is never executed due to its loop condition.
All test cases share the structure of this example: They contain a vulnerable bad()

function and one or more good() functions which are not exploitable. The good() functions
are safe because some of the associated code is enclosed in a dead code section—in the example
the for loop which is never executed. This is not an adequate test for false positives because
it only depends on the tool’s ability to decide if code is executable.
The Sate IV benchmark considers 68 different flow variants. The subset of weaknesses

selected for my evaluation includes test cases which are based on 40 variants. They are listed
in Appendix C.1. The first 23 variants describe intra-procedural data flow whereas the other
17 variants include the interaction of at least two functions.

8.1.2. Preliminary Results

I evaluated my approach with 12,801 test cases which cover weaknesses that are caused by
unvalidated user input. The test cases consist of one function that is subject to the corre-
sponding weakness and one or more others that are not. I examined how often the analysis
warned about vulnerabilities in bad() functions. This gives the number of true positives.
The remaining test cases where the analysis did not warn about a bad() function gives the
number of false negatives. True positives and false negatives are depicted in Figure 8.1a. My
approach found 77 % of all vulnerabilities.
The other interesting key indicator is the number of false positives. For this I counted

how often the tool incorrectly issued a warning for good() functions. The number of true
negatives corresponds to the remaining test cases where the analysis did not report a false
positive. False positives and true negatives are visualized in Figure 8.1b. My approach issued
false positives for 28 % of all test cases.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 65

8. Evaluation

15 23 36 78 11
4
12
9
13
4
19
4
19
5
42
7
68
0
78
9

0

1,000

2,000

3,000

4,000

CWE

T
es
t
C
as
es

(a) Absolute number of correct warnings for each weakness type.

15 23 36

78 114 129

134 194 195

427 680 789
(b) Relative detection rate.

Figure 8.2.: True positives and false negatives for every selected CWE entry.

False Negatives My approach missed vulnerabilities in several test cases belonging to 11
of the 12 weaknesses. These false negatives occur mostly in test cases where constant values
are used to trigger problems. The analysis is only able to detect flaws which are caused by
external input. Without these test cases the detection rate increases from 77 % to 86 %. The
remaining 14 % of the false negatives are caused by the following data flow variants:

• Pointers and C++ references (variants 32, 33)

• Function pointers (variants 44, 65)

• Global variables (variants 45, 68)

The analysis does not model pointer aliasing and is therefore not able to detect vulnerabil-
ities in flow variants 32 and 33. Function pointers are the reason why the tool cannot handle
the inter-procedural flow variants 44 and 65. The call graph does not include function calls
which are based on function pointers. My taint analysis is not able to detect flaws in the
presence of flow variants 45 and 68 because it does not consider global variables. These are no
fundamental limitations of the analysis but rather features that have not been implemented
yet. Figure 8.2 depicts the absolute and relative number of false negatives per CWE entry.

False Positives I measure false positives by counting the number of warnings for good()
functions. They contain the same code as the corresponding bad() function with the dif-
ference that a part of the code which is responsible for the vulnerability lies in a dead code
section. For instance, in one of the data flow variants the tainted source or the vulnerable
function are part of a for loop which never executes.

66 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

8.1. Sate IV Benchmark

15 23 36 78 11
4
12
9
13
4
19
4
19
5
42
7
68
0
78
9

0

1,000

2,000

3,000

4,000

CWE

T
es
t
C
as
es

(a) Absolute number of false positives for each weakness type.

15 23 36

78 114 129

134 194 195

427 680 789
(b) Relative false positives rate.

Figure 8.3.: True negatives and false positives for every selected CWE entry.

This reduces the evaluation of false positives to the ability of the tool to detect dead code
regions. I think this is a rather unfortunate test case design. It would be more insightful
when the good() functions instead focused on data flow variants which sometimes miss
source or sink or where the data flow from the source does not reach the sink. This would
test how accurate the tools model the data flow of the program.
My analysis reported false positives in 28 % of the test cases. The false positives occur for

some of the test cases which include the following data flow variants:

• If statements (variants 3–11, 13, 14)

• Switch statement (variant 15)

• For loop (variant 17)

The first type of flow variants which cause false positives are if statements that surround
either the tainted source or vulnerable sink with a condition that is never satisfied. Therefore
the sink or source are never executed and the vulnerability is not exploitable. The false
positive elimination (FPE) cannot decide whether conditions are unsatisfiable when they
contain static or const variables or include function calls which return constant values. The
second type of flow variants are switch statements that are used with a constant value. The
source or sink are contained in a switch case which is never executed. The FPE step does not
evaluate which switch cases are executable. The last type of flow variants are for loops with
an unsatisfiable condition surrounding source or sink to disable the vulnerability. As with if
statements the FPE analysis is not able to analyze certain loop conditions for satisfiability.
Figure 8.3 depicts the absolute and relative number of false positives per CWE entry.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 67

8. Evaluation

Standard IPA
0

200

400

600

69 69

413

567

432

599

T
im

e
in

Se
co
nd

s

(a) Measurements in seconds for Dovecot.

Standard IPA
0

500

1,000

1,500

2,000

65 65

1666

1946

1674

2083

T
im

e
in

Se
co
nd

s

(b) Measurements in seconds for Vim.

Figure 8.4.: Compilation with gcc compared to Goanna and Goanna+DFA .

8.2. Runtime Performance

In this section I compare the analysis time for four large open source projects. I used the
gcc compiler to obtain the time needed for compilation. Goanna is evaluated in its standard
configuration. Goanna+DFA extends Goanna with the data flow framework and checks
for security vulnerabilities. The measurements for Goanna and Goanna+DFA also include
compilation and Goanna+DFA performs all standard Goanna checks as well.
I compare the intra-procedural analysis (Standard) with the expensive but more accurate

inter-procedural analysis (IPA). The compile time is included in both cases as a baseline. All
three tools were executed on a workstation with a quad core 2.3 GHz Intel Core i7 CPU,
4 GB of RAM, running Ubuntu 11.04. I used gcc in version 4.5.2 with standard options.
The values presented are averages from at least three measurements. The standard devia-

tion is not depicted in the diagrams since it is too small to be visible. The inter-procedural
analysis with Goanna+DFA evaluates on average 1,000 lines of code in 2.3 to 7 seconds.
Goanna was configured to spend no more than 90 seconds on the analysis of a single file.

8.2.1. Dovecot 1.2.0

Dovecot is an open source mail server for UNIX-based systems developed by Timo Sirainen.
It supports several operating systems including Linux, Solaris, FreeBSD, and Mac OS X.
Version 1.2.0 contains 150,000 lines of C code. The intra-procedural analysis with Goanna
takes 6.9 minutes which is 6 times longer than the compilation with gcc. Goanna+DFA
finishes after 7.2 minutes and is therefore 6.4 times slower than compilation. The data
flow framework is responsible for an increase of about 4.6 % in comparison to the standard
version of Goanna. In the inter-procedural case Goanna takes 9.6 minutes which is 8.2 times
longer than gcc and Goanna+DFA finishes after 10 minutes which is 8.7 times slower than
compilation and 5.6 % more than Goanna. Figure 8.4a compares compilation and analysis.

68 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

8.2. Runtime Performance

Standard IPA
0

500

1,000

1,500

2,000

2,500

159 159

1500

2311

1557

2575

T
im

e
in

Se
co
nd

s

(a) Measurements in seconds for Ghostscript.

Standard IPA
0

0.2

0.4

0.6

0.8

1

1.2

⋅104

554 554

4988

11347

5109

11821

T
im

e
in

Se
co
nd

s
(b) Measurements in seconds for Wireshark.

Figure 8.5.: Compilation with gcc compared to Goanna and Goanna+DFA .

8.2.2. Vim 7.3

Vim is a cross-platform text editor developed by Bram Moolenaar. Version 7.3 contains
about 300,000 lines of C code. The compilation with gcc takes 65 seconds which is 25.6 times
faster than the analysis with Goanna which finishes after 27.8 minutes. The analysis with
security checks takes only slightly longer, namely 27.9 minutes. This is an increase of only
0.5 %. The standard inter-procedural analysis finishes after 32.4 minutes which is 29.9 times
the compile time. The taint analysis takes 34.7 minutes which is 32 times slower than gcc
and an overhead of 7 % compared to Goanna. The comparison is displayed in Figure 8.4b.

8.2.3. Ghostscript 9.02

Ghostscript is an open source raster image processor which is the basis of several PostScript
and PDF viewers. Ghostscript 9.02 is built from 1.1 million lines of C code. The compilation
with gcc which takes 2.7 minutes is 9.4 times faster than the standard analysis which finishes
after 25 minutes. Compilation is also 9.8 times faster than the analysis with security checks
enabled which takes 26 minutes. The data flow framework is responsible for an increase of
3.8 %. The standard inter-procedural analysis takes 38.5 minutes which is 14.5 times the
compile time. This increases to 16.2 times for the data flow framework which finishes after 43
minutes. The analysis with security checks adds 11.4 % to the analysis time with standard
Goanna. The comparison is depicted in Figure 8.5a.

8.2.4. Wireshark 1.2.0

Wireshark is an open source packet analyzer which is used for the analysis of network traf-
fic. Wireshark 1.2.0 is based on 1.8 million lines of C code. The intra-procedural analysis
with standard Goanna finishes after 83.1 minutes which is 9 times slower than compilation.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 69

8. Evaluation

muh.c irc.c

fgets() muh_commands() irc_notice() vsnprintf()

Figure 8.6.: Data flow causing the format string vulnerability in muh 2.0.5c.

Goanna with security checks takes 85.2 minutes which is 9.2 times the compile time and an
overhead of 2.4 % compared to Goanna. The inter-procedural analysis is finished after 3.2
hours which is 20.5 times longer than gcc. This increases to 21.3 times when the data flow
framework is enabled which takes 3.3 hours. The taint analysis takes 4.2 % more time than
standard Goanna. Figure 8.5b compares the measurements for Wireshark.

8.3. Bugs in Real Software

Synthetic test cases are designed to cover specific types of vulnerabilities in the presence of
various flow variants. This introduces some complexity to achieve a higher degree of realism.
However, the resulting test cases are still not close to the complexity of software which was
built and extended by different authors over several years. I selected vulnerable versions of an
IRC bouncer, an FTP server, and a configuration management software to test my approach
with real software. The three open source projects contain format string bugs.

8.3.1. muh 2.05d

muh is an IRC bouncer which acts as an intermediary between the chat client and the IRC
server. Versions prior to and including 2.0.5d contain a dangerous format string vulnerability
which is described in CVE-2000-0857.

Vulnerability The vulnerability is caused by an interaction of two different functions which
are part of two separate files. The function muh_commands() from the file irc.c reads user
input with the fgets() function in line 842. This external input is passed as the third
argument to irc_notice() in line 844.

820 void muh_commands(char *command, char *param)

821 {

841 s = (char *)malloc(1024);

842 while(fgets(s, 1023, messagelog)) {

843 if(s[strlen(s) - 1] == ’\n’) s[strlen(s) - 1] = 0;

844 irc_notice(&c_client, status.nickname, s);

845 }

909 }

Listing 8.2: Modified excerpt of the muh_commands() function from muh.c.

70 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

8.3. Bugs in Real Software

ftpcmd.c ftpd.c

fgets() site_exec() vreply()

lreply()

vsnprintf()

Figure 8.7.: Data flow causing the format string vulnerability in wu-ftpd 2.6.0.

The irc_notice() function which resides in the file muh.c passes its third parameter
as a format string to the vsnprintf() function in line 263.

257 void irc_notice(con_t *con, char nickname[], char *format)

258 {

263 vsnprintf(buffer, BUFFERSIZE - 10, format, va);

267 }

Listing 8.3: Modified excerpt of the irc_notice() function from irc.c.

The vsnprintf() function is vulnerable to the format string vulnerability. The interac-
tion between the functions which cause this vulnerability is summarized in Figure 8.6.

Warning The taint analysis warns about a format string vulnerability in line 844 of the
muh.c file. The following is an excerpt of this warning:

muh.c:844: warning: Goanna[SEC-format-string] User-controlled

variable ‘s’ used as format string

842: * muh_commands - reference to variable ‘s’

842: * muh_commands - take the True branch

843: * muh_commands - take the False branch

844: * muh_commands - reference to variable ‘s’

The warning describes the following: Variable s is tainted in line 842 by the user input
function fgets(). s is then passed to the vulnerable function irc_notice() in line 844.

8.3.2. wu-ftpd 2.6.0

A vulnerability was found in the FTP server software wu-ftpd 2.6.0 in the year 2000 where
it was present since 1993 [US-00]. It is a format string vulnerability that allows attackers
to remotely gain root access to the server which executes this version of wu-ftpd. The
vulnerability is described in CVE-2000-0573.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 71

8. Evaluation

Vulnerability I have reduced the responsible source code to a large extent. This allows me
to briefly describe the reasons for the vulnerability. The following three listings show the
core of the problem and contain line numbers that refer to the original files. The ftpcmd.c
file contains the site_exec() function. Line 1930 reads data from the network with the
fgets() function. The retrieved data is stored in the buf variable and passed to the
lreply() function in line 1935.

1865 void site_exec(char *cmd)

1866 {

1930 while (fgets(buf, sizeof buf, cmdf)) {

1935 lreply(200, buf);

1942 }

1949 }

Listing 8.4: Modified excerpt of the site_exec() function from ftpcmd.c.

The other relevant file ftpd.c contains the lreply() function. The buf variable is passed
as the second argument. The lreply() function uses its parameter fmt as the third
argument in a call to vreply().

5343 void lreply(int n, char *fmt, ...)

5344 {

5353 vreply(USE_REPLY_LONG, n, fmt, ap);

5356 }

Listing 8.5: Modified excerpt of the lreply() function from ftpd.c.

The function vreply() uses its third parameter directly as the format string for the
vsnprintf() function which is part of the C standard library. vsnprintf() is subject
to the format string vulnerability which I described in Section 3.2.5.

5274 void vreply(long flags, int n, char *fmt, va_list ap)

5275 {

5290 vsnprintf(buf + (n ? 4 : 0), n ? sizeof(buf) - 4 :
sizeof(buf), fmt, ap);

5306 }

Listing 8.6: Modified excerpt of the vreply() function from ftpd.c.

The format string vulnerability in wu-ftpd involves the interaction of three different func-
tions which are located in two separate files. It is clear that only an inter-procedural analysis
can find vulnerabilities of this kind. The data flow between the three functions which cause
this security flaw is depicted in Figure 8.7.

72 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

8.3. Bugs in Real Software

read.c cfd.c log.c

fgets() ReadLine() AutoExec() CfLog() syslog()

Figure 8.8.: Data flow causing the format string vulnerability in CFEngine 1.5.x.

Warning Goanna issues the following warning about a format string vulnerability which I
have shortened for brevity of presentation:

ftpcmd.c:1935: warning: Goanna[SEC-format-string] User-controlled

variable ‘buf’ used as format string

1930: * site_exec - reference to variable ‘buf’

1930: * site_exec - take the True branch

1933: * site_exec - take the False branch

1935: * site_exec - reference to variable ‘buf’

The warning describes the following: The variable buf is tainted by fgets() in line 1930
and afterwards used in line 1935 as a parameter for the vulnerable lreply() function.

8.3.3. CFEngine 1.5.x

CFEngine is an open source configuration management system developed by Mark Burgess.
It is designed to manage the configuration of large computer systems which consist of het-
erogenous devices. The versions 1.5.x of CFEngine are subject to a format string vulnerabil-
ity. The problem is summarized in CVE-2000-0947.

Vulnerability The vulnerability involves three different files. The AutoExec() function in
the file cfd.c calls ReadLine() in line 1124 which taints the line variable. The sprintf()
function copies the string from line to logbuffer in line 1145. Afterwards logbuffer
is tainted, too. The newly tainted variable is used in a call to CfLog().

1069 void AutoExec()

1071 {

1124 ReadLine(line,1,pp);

1145 sprintf(logbuffer,"%s\n",line);

1146 CfLog(cfinform,logbuffer,"");

1157 }

Listing 8.7: Modified excerpt of the AutoExec() function from cfd.c.

The ReadLine() function which resides in the read.c file reads the contents of a file with
the fgets() function. The external input is returned through its first parameter.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 73

8. Evaluation

43 ReadLine(char *buff,int size,FILE *fp)

49 {

53 if (fgets(buff, size, fp) == NULL)

54 {

57 }

70 return true;

71 }

Listing 8.8: Modified excerpt of the ReadLine() function from read.c.

The CfLog() function in the log.c file passes its second parameter as a format string to
the logging function syslog().

38 CfLog(enum cfoutputlevel level, char *string, char *errstr)

43 {

128 syslog(LOG_ERR,string,VFQNAME);

156 }

Listing 8.9: Modified excerpt of the CfLog() function from log.c.

The format string vulnerability in CFEngine is a typical example for a flaw which is difficult
to find during testing. It is caused by a malicious input used in a logging function. This
is a path of execution which does not occur during normal operation and would require a
special test case. Static analysis tools consider every path of a program and hence can find
this vulnerability without special treatment.

Warning My taint analysis warns about line 1146 of the cfd.c file. This is the line in which
the logbuffer variable which was indirectly tainted by ReadLine() function is passed to
the CfLog() function. This data flow is summarized in Figure 8.8.

cfd.c:1146: warning: Goanna[SEC-format-string] User-controlled

variable ‘logbuffer’ used as format string

1124: * AutoExec - reference to variable ‘line’

1126: * AutoExec - take the False branch

1134: * AutoExec - take the False branch

1143: * AutoExec - take the True branch

1146: * AutoExec - reference to variable ‘logbuffer’

Vulnerabilities often span several functions and files as in this case. A complete trace from
tainted source to vulnerable sink through the different functions would be helpful for the
user to evaluate the warning. Unfortunately, this is currently not possible in Goanna. I will
discuss future work which addresses this issue in Chapter 9.

74 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

8.4. Tool Comparison

Le
xic
al

cq
ua
l

Vu
lnc
he
ck

Go
an
na

0%

20%

40%

60%

80%

100%
100%

58%

26%

87%

D
et
ec
ti
on

R
at
e

(a) Detection rate for standard and IPA tests.

Le
xic
al

cq
ua
l

Vu
lnc
he
ck

Go
an
na

0%

20%

40%

60%

80%

100%
100%

35%

7%

30%

Fa
ls
e
P
os
it
iv
es

(b) False positives for standard and IPA tests.

Figure 8.9.: Comparison of static analysis tools based on Sate IV format string test cases.

8.4. Tool Comparison

The benchmark results for my taint analysis gain their full meaning only when compared to
the outcome of other approaches. I selected five out of the nine tools presented in Chapter 2
for comparison with Goanna: The lexical analysis tools ITS4, RATS and Flawfinder, the
type-based approach cqual, and the data flow analysis Vulncheck.
The source code for these five tools is available online. They all cover format string

vulnerabilities and have a configuration file of vulnerable functions. I decided to add missing
format string and user input functions to all tools in this comparison. This shifts the focus
from testing the completeness of their configuration lists to the evaluation of their actual
reasoning capabilities. Every tool was evaluated with the format string test cases from the
Sate IV benchmark. The results of my comparison—i.e., the detection rate and the number
of false positives per tool—are depicted in Figure 8.9.

8.4.1. ITS4, RATS, Flawfinder

ITS4, RATS and Flawfinder are simple lexical analysis tools. They all miss some format
string functions. Adding these to ITS4 resulted in an increase of both the detection and false
positive rate from 58.3 % to 100 %. The other tools behaved in exactly the same way.
Lexical analysis tools do not consider user input or the data flow of a program but merely

warn about the occurrence of a specific string in the source code. The three tools always
report the corresponding false positive when they detect an actual vulnerability in a test case.
The results show that they cannot distinguish between a vulnerability and a false positive.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 75

8. Evaluation

Le
xic
al

cq
ua
l

Vu
lnc
he
ck

Go
an
na

0

0.2

0.4

0.6

0.8

1
1

0.61

0.25

0.35

Fa
ls
e
P
os
it
iv
es

Figure 8.10.: False positives per warning.

8.4.2. cqual

The analysis of cqual is based on type annotations provided by the programmer. I decided
not to add annotations to the source code which would require additional effort and expertise
with the tool. Instead I used its standard configuration file. The file contains annotations for
nearly all of the user input, taint transfer, and format string functions used in the Sate IV
test cases. I added nine missing functions for the wchar_t data type.
The type-based approach of cqual does not achieve the perfect detection rate of the lexical

analysis tools. However, the results demonstrate its ability to distinguish between actual
vulnerabilities and false positives which I think is more important. The tool takes user input
sources into account so that warnings are likely to be accurate.
The before mentioned design of the test cases which tests for false positives based on dead

code sections is responsible for most of the false positives reported by cqual. Other false
positives are caused by its flow-insensitive approach, an inherent property of type checking:
A variable is either considered to be tainted everywhere in a function or nowhere. This can
even lead to taint flowing backwards from a user input function to previous statements.
Tainted data passed as void pointer (variant 64) seems to remove the tainted type so

that a vulnerability is not detected. cqual also has problems to find flaws when a union data
structure is part of the data flow (variant 34). Figure 8.10 compares how many false positives
a tool reported on average per warning. cqual reported 0.61 false positives per warning.

8.4.3. Vulncheck

Vulncheck is a compiler extension for gcc which adds warnings for security vulnerabilities. It
employs a data flow analysis to track tainted variables and uses a range analysis provided by
another extension of gcc to eliminate false positives.

76 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

8.4. Tool Comparison

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 31 32 34 41 42 44 45 51 52 53 54 61 63 64 65 66 67 68

0%

20%

40%

60%

80%

100%

Data Flow Variant

D
et
ec
ti
on

R
at
e

Figure 8.11.: Detection rate by flow variant for Goanna , cqual and Vulncheck .

When I first tested Vulncheck it failed to report any warnings. The reason is pointer
arithmetics used in function parameters like fgets(data+data_len, ...). Vulncheck
seems to be confused when an argument is not a single variable. I modified the source code
to remove this barrier. Additionally, I added the network input function recv() to its list
of tainting functions.
Vulncheck still has problems with functions that take a variable argument list. Similar to

cqual it fails when the data flow contains a union data structure. Vulncheck only considers
taint propagation through assignments and ignores string copy functions like strcpy().
The approach is purely intra-procedural and is therefore not able find vulnerabilities which

span several functions. The results suggest that it found some vulnerabilities in inter-
procedural test cases. However, this is a side effect of the underlying gcc which inlined
the code of some functions. Vulncheck reported on average 0.25 false positives per warning.

8.4.4. Goanna

Goanna achieved the highest detection rate in the comparison only topped by the lexical
analysis tools. But in contrast to ITS4, RATS and Flawfinder it reports only 0.35 false
positives per warning. The false positive elimination was able to reduce the number of false
positives from 35 % to 30.3 %. Similar to cqual this high number of false positives is mainly
caused by the design of the test cases.
Apart from this, my approach is not able to detect vulnerabilities in test cases that use

pointers for taint propagation (variant 32) due to the lack of adequate pointer aliasing. Inter-
procedural test cases which rely on function pointers (variants 44, 65) are also problematic
since these are not represented in the internal call graph. Taint which is propagated by global
variables is also not modeled by my approach (variants 45, 68).
Figure 8.11 compares the detection rate of Goanna, cqual and Vulncheck by data flow

variant. Appendix C.1 describes the different variants.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 77

9. Conclusion

This chapter presents the contributions of my approach which combines data flow analysis
and model checking. Next, I will compare my analysis with others from the literature. At
last, an outlook discusses possible improvements which could be addressed in future work.

9.1. Contributions

This thesis describes a fully inter-procedural analysis which is reasonably fast and achieves
a balance between a high detection rate and few false positives. My combined approach of
data flow analysis and model checking covers a broad scope of vulnerabilities.

Combined Approach In this work I described how model checking and data flow analysis
can be combined to obtain a fast, precise, traceable, and flexible taint analysis. The data
flow analysis provides an efficient way to propagate tainted data in a program and is better
suited to deal with data-dependent properties than model checking. However, unlike standard
approaches which rely on data flow analysis alone, my combined approach is able to report
warnings which incorporate counter-example traces indicating the path leading to a security
vulnerability. Moreover, by leveraging model checking techniques I am able to enhance the
precision of the analysis in an efficient manner.

Inter-procedural Analysis Most of the security vulnerabilities that occur in software span
several functions. They are often caused by the interaction of code written by different devel-
opers which rely on different assumptions. Goanna provides a framework for summary-based
inter-procedural analyses which allowed me to lift my taint analysis to an inter-procedural
level. As a result the analysis is able to detect vulnerabilities caused by user input which
cross function boundaries.

Extendability My approach covers a broad variety of different vulnerability types: path
traversals, command injections, invalid array accesses, uncontrolled format string problems,
buffer overflows, and uncontrolled memory allocations. The configuration files allow the user
to add user input, transfer, and vulnerable functions. The generic data flow framework can
also be extended to cover other weaknesses which are caused by user input.

Runtime Performance The evaluation results presented in the previous chapter show that
the inter-procedural analysis can evaluate 1,000 lines of code in 2.3 to 7 seconds on average.
This differs with the complexity of the analyzed program. The data flow framework and the
associated security checks are responsible for an overhead of only 4.2 to 11.4 % compared to
the standard analysis of a program with Goanna.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 79

9. Conclusion

Detection Rate The preliminary results for the Sate IV benchmark are promising with
an average detection rate of 86 % for vulnerabilities which are caused by external input. The
relatively high false positive rate of 28 % can be explained by the design of the test cases. Still
Goanna reports on average less false positives per correct warning than comparable tools.
I also demonstrated the ability of my approach to find vulnerabilities in real software by

studying format string bugs in three open source projects. My analysis leverages the results
of a standard range analysis provided by Goanna to distinguish between exploitable buffer
overflows and safe memory accesses.

9.2. Related Work

Several approaches which apply static analysis to the domain of security have been proposed
in the literature. This section summarizes those that are similar to my approach. Chapter 2
covers these and others in greater detail.

Lexical Analysis ITS4 [VBKM00], Flawfinder [Whe11] and RATS [Sec11] are lexical anal-
ysis tools which match the tokenized source code with a list of dangerous functions. This
simple approach is responsible for the high number of false positives reported by these tools.
The three tools ignore the data flow of the program and are therefore not able to detect
vulnerabilities caused by unvalidated external input.

Annotation-based Analysis Splint [LE01] employs an annotation-based analysis to detect
security flaws in C programs. It requires the programmer to add annotations to the program.
Splint does not perform an inter-procedural analysis but relies on specific annotations to check
locally for vulnerabilities which span several functions. Splint considers the expressions used
as actual arguments in its constraints and with this achieves context-sensitivity.

Type-based Analysis The type-based approach by cqual [STFW01] relies on the program-
mer to add type qualifiers to the program. It facilitates type inference and type checking to
detect security flaws as type inconsistencies. cqual also provides a configuration list which
provides annotations for functions of the C standard library.
The tool is able to find inter-procedural vulnerabilities by checking the type of parameters

against actual arguments. A major drawback of the approach is its flow-insensitivity: a
tainted variable is considered to be tainted anywhere in the program independent from the
actual statement which tainted it.

Data Flow Analysis Vulncheck [Sot05] is an extension for the open source compiler gcc. It
augments the compiler with a data flow analysis. This analysis is used to propagate taint
information inside functions.
Vulncheck does not include an inter-procedural analysis and is therefore limited to simpler

vulnerabilities which occur inside a single function. Similar to my approach it facilitates
a value range analysis to avoid spurious warnings about buffer overflows which are not ex-
ploitable because the programmer validated the user input.

80 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

9.3. Future Work

9.3. Future Work

The evaluation conducted in the previous chapter revealed several opportunities to improve
my approach. This includes certain ways of taint propagation which I do not consider at
the moment, a better handling of pointer aliases, and improved warnings for vulnerabilities
which involve several functions.

Global Variables Taint can spread via global variables. When one function taints a global
variable and another unrelated function passes this variable to a vulnerable function it is
difficult to decide if the second function is executed before the first—which would be safe—
or afterwards—which would result in a vulnerability. Apart from that it is easy to handle
global variables. They could just be treated as additional parameters to every function in
the same scope. The analysis would then only need to keep track of tainted global variables
and warn about their uses in vulnerable functions.

Pointer Aliasing Another more significant improvement to my approach would be the incor-
poration of a flow-sensitive alias analysis in the data flow framework. Pointer alias informa-
tion would improve the existing checks and enable the analysis to detect more sophisticated
security vulnerabilities. The challenge is again to balance between the preciseness of the alias
analysis and the associated computational cost. The client-driven pointer analysis presented
by Guyer and Lin in [GL03] combines a data-flow-based pointer analysis and a client data
flow analysis. My approach would benefit from a similar alias analysis.

Structures My analysis treats structures as single objects and does not distinguish indi-
vidual fields. This is an over approximation and my algorithm would report a false positive
when some field of a structure is tainted and another one is used in a vulnerable function.
A better abstraction would maintain a taint status for each field of a structure. However,
unions should still be handled as one single object because they provide different fields to
access the same data. This is even tested in variant 34 of the Sate IV benchmark and
detected by my analysis.

Taint Propagation The taint analysis proposed in this work detects functions which return
user input obtained from another function and also functions which use one of their pa-
rameters in a vulnerable function. Furthermore, it considers several library functions which
transfer taint from one parameter to another like strcpy(). My approach misses a similar
handling of user defined functions. This would require a preceding inter-procedural analysis
of the data flow behavior for all functions in a program.

Warnings Detailed warnings for vulnerabilities which span several functions would further
improve my approach. At the moment a warning contains a path for the function where the
taint is returned from one function and passed to a vulnerable function. A complete path
through all participating functions from the source to the sink or at least an additional call
stack would help the user to better understand the flaw. This would make it easier for the
user to evaluate a warning and decide if it is in fact a vulnerability.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 81

A. Terminology

This section clarifies the meaning of several important keywords which are frequently used
in this work. The terminology presented here is based on the IEEE Standard Glossary of
Software Engineering Terminology [Soc90].

Error Human action that produces an incorrect result. For instance a programmer who
introduces a bug into a software product.

Fault also bug, flaw or defect. An incorrect step, process, or data definition in a computer
program. A fault can lead to a failure when it is encountered during the execution of
the affected program.

Failure The inability of a software system to perform its required functions with respect to
its specification. A failure is discovered when the observed behavior differs from the
expected.

Vulnerability also security flaw. A fault in the design, implementation, or operation of a
software system that could be exploited by an attacker which would result in a security
relevant failure.

Weakness A category which contains vulnerabilities of the same type. A program can for
instance be subject to a specific printf() vulnerability which is an instance of the
generic format string weakness. Often used as a synonym for vulnerability.

Validation Checking that a software system performs according to its specification and
achieves the intended purpose. Generally includes an activity to ensure the absence of
faults and vulnerabilities.

Integrity The assurance that a system will work as intended under all conditions. The
integrity of a system includes that information is unmodified and possible modifications
would be detected.

Exploit A small piece of software especially written to take advantage of a vulnerability in
order to cause unintentional or unexpected behavior in other computer software. This
violates the integrity of the system and may be associated with a gain for the attacker.

Attacker A person who exploits a vulnerability of a computer system. This breaks its in-
tegrity and may lead to damage for the system or its users.

Abbot et al. [ACD+76] explain several terms of software security by drawing an striking
analogy to the physical concept of potential and kinetic energy:

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 83

A. Terminology

“The mere existence of a flaw renders an installation vulnerable. This is anal-
ogous to the engineering concept of “unavailable” potential energy. When an
individual (or group) becomes aware of a flaw, an active potential to violate in-
stallation integrity is achieved—analogous to “available” potential energy. With
adequate motivation, skill, resources, and opportunity, this potential is trans-
formed into kinetic energy, and an installation’s integrity is penetrated. This
penetration of integrity provides the individual with potential access to one or
more classes of resources—items of value to an installation or its users. If the
individual now chooses, this access may be exploited to produce a loss for the
installation (such as a loss of information, service, or equipment) and/or a gain
for the attacker.”

84 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B. Knowledge Base

The knowledge base of my taint analysis contains information about user input functions
and vulnerable functions. It is used to determine which variables get tainted and where user
input triggers a vulnerability.

B.1. User Input Functions

The following tables list input functions for nine different categories: Character Input Func-
tions, Line Input Functions, Formatted Input Functions, Primitive Input Functions, Working
Directory Functions, Symbolic Links Functions, Password Functions, Environment Variables
Functions, and Network Input Functions. Each row corresponds to a function and provides
its name, signature, which parameters are tainted by it, and whether the return value is
tainted as well. A short description explains the functions purpose.

Character Input Functions Functions reading characters from external input.

Table B.1.: Character Input Functions

Name Signature Parameters Return

fgetc int fgetc(FILE *stream); {} true

Reads the next character from stream and returns it.

getc int getc(FILE *stream); {} true

Similar to the fgetc() function but maybe implemented as a macro.

getchar int getchar(void); {} true

Equivalent to getc(stdin).

fgetc_
unlocked

int fgetc_unlocked(FILE *stream); {} true

Non-locking equivalent of the fgetc() function.

getc_
unlocked

int getc_unlocked(FILE *stream); {} true

Non-locking equivalent of the getc() function.

getchar_
unlocked

int getchar_unlocked(void); {} true

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 85

B. Knowledge Base

Table B.1.: Character Input Functions (cont’d)

Name Signature Parameters Return

Non-locking equivalent of the getchar() function.

fgetwc wint_t fgetwc(FILE *stream); {} true

Wide-character equivalent of the fgetc() function.

getwc wint_t getwc(FILE *stream); {} true

Wide-character equivalent of the getc() function.

getwchar wint_t getwchar(void); {} true

Wide-character equivalent of the getwchar() function

fgetwc_
unlocked

wint_t fgetwc_unlocked(FILE

*stream);
{} true

Wide-character equivalent of the fgetc_unlocked() function.

getwc_
unlocked

wint_t getwc_unlocked(FILE

*stream);
{} true

Wide-character equivalent of the getc_unlocked() function.

getwchar_
unlocked

wint_t getwchar_unlocked(void); {} true

Wide-character equivalent of the getchar_unlocked() function.

getw int getw(FILE *stream); {} true

Reads a word from stream and returns it.

_IO_getc int _IO_getc(_IO_FILE * __fp); {} true

Reads the next character from __fp and returns it.

_gettc {} true

Line Input Functions Functions reading lines from external input.

Table B.2.: Line Input Functions

Name Signature Parameters Return

fgets char *fgets(char *s, int size,
FILE *stream);

{1} true

86 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.1. User Input Functions

Table B.2.: Line Input Functions (cont’d)

Name Signature Parameters Return

Reads in at most one less than size characters from stream and stores them
into the buffer pointed to by s and returns them.

gets char *gets(char *s); {1} true

Reads a line from stdin into the buffer pointed to by s and returns it.

fgets_
unlocked

char *fgets_unlocked(char *s, int
n, FILE *stream);

{1} true

Non-locking equivalent of the fgets() function.

fgetws wchar_t *fgetws(wchar_t *ws, int
n, FILE *stream);

{1} true

Wide-character equivalent of the fgets() function.

fgetws_
unlocked

wchar_t *fgetws_unlocked(wchar_t

*ws, int n, FILE *stream);
{1} true

Wide-character equivalent of the fgets_unlocked() function.

getline ssize_t getline(char **lineptr,
size_t *n, FILE *stream);

{1} false

Reads an entire line from stream, storing the address of the buffer contain-
ing the text into *lineptr.

fgetln char *fgetln(FILE *stream, size_t

*len);
{} true

Reads an entire line from stream and returns it.

fgetline char *fgetline(FILE *stream, size_
t *len);

{} true

Reads an entire line from stream and returns it.

getdelim ssize_t getdelim(char **lineptr,
size_t *n, int delim, FILE

*stream);

{1} false

Similar to the getline() function but the delimiter can be specified.

__
getdelim

ssize_t __getdelim(char **lineptr,
size_t *n, int delim, FILE

*stream);

{1} false

Macro equivalent of the getdelim() function.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 87

B. Knowledge Base

Formatted Input Functions Functions reading input according to a format.

Table B.3.: Formatted Input Functions

Name Signature Parameters Return

scanf int scanf(const char *format,
...);

{2 . . . n} false

Reads input from the standard input stream and assigns it to a variable
number of arguments.

fscanf int fscanf(FILE *stream, const
char *format, ...);

{3 . . . n} false

Reads input from the stream pointer stream and assigns it to a variable
number of arguments.

vscanf int vscanf(const char *format, va_
list ap);

{2} false

va_list equivalent of the scanf() function.

vfscanf int vfscanf(FILE *stream, const
char *format, va_list ap);

{3} false

va_list equivalent of the fscanf() function.

wscanf int wscanf(const wchar_t *restrict
format, ...);

{2 . . . n} false

Wide-character equivalent of the scanf() function.

fwscanf int fwscanf(FILE *restrict stream,
const wchar_t *restrict format,
...);

{3 . . . n} false

Wide-character equivalent of the fscanf() function.

Primitive Input Functions Functions reading bytes from external input.

Table B.4.: Primitive Input Functions

Name Signature Parameters Return

read ssize_t read(int fd, void *buf,
size_t count);

{2} false

Reads up to count bytes from file descriptor fd into the buffer buf.

88 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.1. User Input Functions

Table B.4.: Primitive Input Functions (cont’d)

Name Signature Parameters Return

pread ssize_t pread(int fd, void *buf,
size_t count, off_t offset);

{2} false

Reads up to count bytes from file descriptor fd at offset offset into the buffer
starting at buf.

pread64 ssize_t pread64(int fildes,
void *buf, size_t nbyte, off64_t
offset);

{2} false

64bit equivalent of the pread() function.

readv ssize_t readv(int fd, const struct
iovec *iov, int iovcnt);

{2} false

Reads up to count bytes from file descriptor fd into the multiple buffers
described by iov.

preadv ssize_t preadv(int d, const struct
iovec *iov, int iovcnt, off_t
offset);

{2} false

Reads up to count bytes from file descriptor fd at offset offset into the
multiple buffers described by iov.

fread size_t fread(void *ptr, size_t
size, size_t nmemb, FILE *stream);

{1} false

Reads nmemb elements of data, each size bytes long, from the stream pointed
to by stream, storing them at the location given by ptr.

fread_
unlocked

size_t fread_unlocked(void *ptr,
size_t size, size_t n, FILE

*stream);

{1} false

Non-locking equivalent of the fread() function.

aio_read int aio_read(struct aiocb

*aiocbp);
{1} false

Requests an asynchronous ’n = read(fd, buf, count)’ with fd, buf, count
given by aiocbp->aio_fildes, aiocbp->aio_buf, aiocbp->aio_nbytes, respec-
tively.

Working Directory Functions Functions returning the current working directory.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 89

B. Knowledge Base

Table B.5.: Working Directory Functions

Name Signature Parameters Return

getcwd char *getcwd(char *buf, size_t
size);

{1} true

Copies an absolute pathname of the current working directory to the array
pointed to by buf, which is of length size and returns it.

getwd char *getwd(char *buf); {1} true

Copies an absolute pathname of the current working directory to the array
pointed to by buf and returns it.

get_
current_
dir_name

char *get_current_dir_name(void); {} true

Returns an absolute pathname of the current working directory.

g_get_
current_dir

gchar* g_get_current_dir(void); {} true

Returns an absolute pathname of the current working directory.

Symbolic Links Functions Functions returning the path of a symbolic link.

Table B.6.: Symbolic Links Functions

Name Signature Parameters Return

readlink ssize_t readlink(const char *path,
char *buf, size_t bufsiz);

{2} false

Places the contents of the symbolic link path into the buffer buf, which has
size bufsiz.

Password Functions Functions reading passwords.

Table B.7.: Password Functions

Name Signature Parameters Return

getpass char *getpass(const char *
prompt);

{} true

90 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.1. User Input Functions

Table B.7.: Password Functions (cont’d)

Name Signature Parameters Return

Outputs the string prompt and reads one line (the password) which is re-
turned.

Environment Variables Functions Functions returning the values of environment variables.

Table B.8.: Environment Variables Functions

Name Signature Parameters Return

getenv char *getenv(const char *name); {} true

Searches the environment list for a variable that matches name and returns
the value.

wgetenv wchar_t *wgetenv(const wchar_t

*varname);
{} true

Wide-character equivalent of the getenv() function.

_wgetenv wchar_t *_wgetenv(const wchar_t

*varname);
{} true

Wide-character equivalent of the getenv() function.

curl_
getenv

char *curl_getenv(const char

*name);
{} true

Portable wrapper of the getenv() function.

g_getenv gchar* g_getenv(const gchar

*variable);
{} true

Searches the environment list for variable and returns the corresponding
value.

g_get_
home_dir

gchar* g_get_home_dir(void); {} true

Returns the home directory of the user.

g_get_
tmp_dir

gchar* g_get_tmp_dir(void); {} true

Returns a directory to be used for temporary files.

Network Input Functions Functions reading input from the network.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 91

B. Knowledge Base

Table B.9.: Network Input Functions

Name Signature Parameters Return

recv ssize_t recv(int s, void *buf,
size_t len, int flags);

{2} false

Receive a message from a socket.

recvfrom ssize_t recvfrom(int s, void

*buf, size_t len, int flags,
struct sockaddr *from, socklen_t

*fromlen);

{2} false

Receive a message from a socket.

recvmsg ssize_t recvmsg(int s, struct
msghdr *msg, int flags);

{2} false

Receive a message from a socket.

B.2. Vulnerable Functions

The following tables list vulnerable functions for nine different categories: Format String Vul-
nerabilities, Command Injection Vulnerabilities, String Manipulation Vulnerabilities, Mem-
ory Allocation Vulnerabilities, Memory Copy Vulnerabilities, Configuration Vulnerabilities,
Path Traversal Vulnerabilities, Process Control Vulnerabilities, and Search Path Vulnera-
bilities. Each row corresponds to a function and provides its name, signature, and which
parameters are considered vulnerable to user input. A short description explains the func-
tions purpose.

Format String Vulnerabilities Unchecked user input is used as the format string parameter
of certain formatting functions. An attacker can crash the program or even execute harmful
code.

Table B.10.: Format String Vulnerabilities

Name Signature Parameters

printf int printf(const char *format, ...); {1}

Writes formatted data to the standard output using a variable number
of arguments for expansion.

fprintf int fprintf(FILE *stream, const char

*format, ...);
{2}

92 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.2. Vulnerable Functions

Table B.10.: Format String Vulnerabilities (cont’d)

Name Signature Parameters

Writes formatted data to the specified stream using a variable number
of arguments for expansion.

sprintf int sprintf(char *str, const char

*format, ...);
{2}

Writes formatted data to the specified character array using a variable
number of arguments for expansion.

snprintf int snprintf(char *str, size_t size,
const char *format, ...);

{3}

Writes at most n characters to the specified character array using a
variable number of arguments for expansion.

vprintf int vprintf(const char *format, va_
list ap);

{1}

va_list equivalent of the printf() function.

vfprintf int vfprintf(FILE *stream, const char

*format, va_list ap);
{2}

va_list equivalent of the fprintf() function.

vsprintf int vsprintf(char *str, const char

*format, va_list ap);
{2}

va_list equivalent of the sprintf() function

vsnprintf int vsnprintf(char *str, size_t size,
const char *format, va_list ap);

{3}

va_list equivalent of the snprintf() function.

wprintf int wprintf(const wchar_t *format,
...);

{1}

Wide-character equivalent of the printf() function.

fwprintf int fwprintf(FILE *stream, const
wchar_t *format, ...);

{2}

Wide-character equivalent of the fprintf() function.

swprintf int swprintf(wchar_t *wcs, size_t
maxlen, const wchar_t *format, ...);

{3}

Wide-character equivalent of the snprintf() function.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 93

B. Knowledge Base

Table B.10.: Format String Vulnerabilities (cont’d)

Name Signature Parameters

snwprintf {3}

Non-existent wide-character equivalent of the snprintf() function.

vwprintf int vwprintf(const wchar_t *format,
va_list args);

{1}

Wide-character equivalent of the vprintf() function.

vfwprintf int vfwprintf(FILE *stream, const
wchar_t *format, va_list args);

{2}

Wide-character equivalent of the vfprintf() function.

vswprintf int vswprintf(wchar_t *wcs, size_t
maxlen, const wchar_t *format, va_list
args);

{3}

Wide-character equivalent of the vsnprintf() function.

syslog void syslog(int priority, const char

*format, ...);
{2}

Writes formatted data to the system log using a variable number of
arguments for expansion.

vsyslog void vsyslog(int priority, const char

*format, va_list ap);
{2}

Writes formatted data to the system log using a va_list for expansion.

obstack_printf {2}

Obstack equivalent of the printf() function.

obstack_vprintf {2}

Obstack equivalent of the vprintf() function.

asprintf int asprintf(char **strp, const char

*fmt, ...);
{2}

Writes formatted data to an allocated character array using a variable
number of arguments for expansion.

vasprintf int vasprintf(char **strp, const char

*fmt, va_list ap);
{2}

94 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.2. Vulnerable Functions

Table B.10.: Format String Vulnerabilities (cont’d)

Name Signature Parameters

Writes formatted data to an allocated character array using a va_list
for expansion.

setproctitle void setproctitle(const char *fmt ...) {1}

Sets the process title that appears in the ps command.

Command Injection Vulnerabilities Unchecked user input is executed as a command with
the same privileges as the vulnerable application.

Table B.11.: Command Injection Vulnerabilities

Name Signature Parameters

system int system(const char *command); {1}

Executes the argument as a command.

popen FILE *popen(const char *command, const
char *type);

{1}

Executes the argument as a command.

execl int execl(const char *path, const char

*arg, ...);
{1 . . . n}

Initiates a new program in the same environment in which it is op-
erating.

execle int execle(const char *path, const
char *arg, ..., char *const envp[]);

{1 . . . n}

Executes a process in an environment assigned.

execlp int execlp(const char *file, const
char *arg, ...);

{1 . . . n}

PATH environment equivalent of the execl() function.

execlpe int execlpe(const char *file, const
char *arg0, ..., char *const envp[]);

{1 . . . n}

PATH environment equivalent of the execle() function.

execv int execv(const char *path, char

*const argv[]);
{1,2}

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 95

B. Knowledge Base

Table B.11.: Command Injection Vulnerabilities (cont’d)

Name Signature Parameters

Similar to execl except that the arguments are passed as null termi-
nated array.

execve int execve(const char *filename, char

*const argv[], char *const envp[]);
{1,2,3}

Executes a program.

execvp int execvp(const char *file, char

*const argv[]);
{1,2}

PATH environment equivalent of the execv() function.

execvpe int execvpe(const char *file, char

*const argv[], char *const envp[]);
{1,2,3}

PATH environment equivalent of the execve() function.

_spawnl int _spawnl(int _mode, const char *_
path, const char *_argv0, ...);

{2 . . . n}

_spawnle int _spawnle(int _mode, const char *_
path, const char *_argv0, ..., char

*const _envp[]);

{2 . . . n}

_spawnlp int _spawnlp(int _mode, const char *_
path, const char *_argv0, ...);

{2 . . . n}

_spawnlpe int _spawnlpe(int _mode, const char *_
path, const char *_argv0, ..., char

*const _envp[]);

{2 . . . n}

_spawnv int _spawnv(int _mode, const char *_
path, char *const _argv[]);

{2,3}

_spawnve int _spawnve(int _mode, const char *_
path, char *const _argv[], char *const
_envp[]);

{2,3,4}

96 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.2. Vulnerable Functions

Table B.11.: Command Injection Vulnerabilities (cont’d)

Name Signature Parameters

_spawnvp int _spawnvp(int _mode, const char *_
path, char *const _argv[]);

{2,3}

_spawnvpe int _spawnvpe(int _mode, const char *_
path, char *const _argv[], char *const
_envp[]);

{2,3,4}

_wsystem int _wsystem(const wchar_t *command); {1}

Wide-character equivalent of the system() function.

wpopen FILE *_wpopen(const wchar_t *command,
const wchar_t *mode);

{1}

Wide-character equivalent of the popen() function.

wexecl intptr_t _wexecl(const wchar_t

*cmdname, const wchar_t *arg0, ...);
{1 . . . n}

Wide-character equivalent of the execl() function.

wexeclp intptr_t _wexeclp(const wchar_t

*cmdname, const wchar_t *arg0, ...);
{1 . . . n}

Wide-character equivalent of the execlp() function.

wexecle intptr_t _wexecle(const wchar_t

*cmdname, const wchar_t *arg0, ...);
{1 . . . n}

Wide-character equivalent of the execle() function.

wexeclpe intptr_t _wexeclpe(const wchar_t

*cmdname, const wchar_t *arg0, ...,
const wchar_t *const *envp);

{1 . . . n}

Wide-character equivalent of the execlpe() function.

wexecv intptr_t _wexecv(const wchar_t

*cmdname, const wchar_t *const *argv);
{1,2}

Wide-character equivalent of the execv() function.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 97

B. Knowledge Base

Table B.11.: Command Injection Vulnerabilities (cont’d)

Name Signature Parameters

wexecve intptr_t _wexecve(const wchar_t

*cmdname, const wchar_t *const *argv,
const wchar_t *const *envp);

{1,2,3}

Wide-character equivalent of the execve() function.

wexecvp intptr_t _wexecvp(const wchar_t

*cmdname, const wchar_t *const *argv);
{1,2}

Wide-character equivalent of the execvp() function.

wexecvpe intptr_t _wexecvpe(const wchar_t

*cmdname, const wchar_t *const *argv,
const wchar_t *const *envp);

{1,2,3}

Wide-character equivalent of the execvpe() function.

_wspawnl int _wspawnl(int _mode, const wchar_t

*_path, const wchar_t *_argv0, ...);
{2 . . . n}

Wide-character equivalent of the _wspawnl() function.

_wspawnle int _wspawnle(int _mode, const wchar_
t *_path, const wchar_t *_argv0, ...,
wchar_t *const _envp[]);

{2 . . . n}

Wide-character equivalent of the _spawnle() function.

_wspawnlp int _wspawnlp(int _mode, const wchar_t

*_path, const wchar_t *_argv0, ...);
{2 . . . n}

Wide-character equivalent of the _spawnlp() function.

_wspawnlpe int _wspawnlpe(int _mode, const wchar_
t *_path, const wchar_t *_argv0, ...,
wchar_t *const _envp[]);

{2 . . . n}

Wide-character equivalent of the _spawnlpe() function.

_wspawnv int _wspawnv(int _mode, const wchar_t

*_path, wchar_t *const _argv[]);
{2,3}

Wide-character equivalent of the _spawnv() function.

_wspawnve int _wspawnve(int _mode, const wchar_t

*_path, wchar_t *const _argv[], wchar_
t *const _envp[]);

{2,3,4}

98 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.2. Vulnerable Functions

Table B.11.: Command Injection Vulnerabilities (cont’d)

Name Signature Parameters

Wide-character equivalent of the _spawnve() function.

_wspawnvp int _wspawnvp(int _mode, const wchar_t

*_path, wchar_t *const _argv[]);
{2,3}

Wide-character equivalent of the _spawnvp() function.

_wspawnvpe int _wspawnvpe(int _mode, const wchar_
t *_path, wchar_t *const _argv[],
wchar_t *const _envp[]);

{2,3,4}

Wide-character equivalent of the _spawnvpe() function.

fexecve int fexecve(int fd, char *const
argv[], char *const envp[]);

{1}

File descriptor equivalent of the execve() function.

WinExec UINT WINAPI WinExec(LPCSTR lpCmdLine,
UINT uCmdShow);

{1}

Executes the argument as a command.

ShellExecute HINSTANCE ShellExecute(HWND hwnd,
LPCTSTR lpOperation, LPCTSTR lpFile,
LPCTSTR lpParameters, LPCTSTR
lpDirectory, INT nShowCmd);

{1}

Executes the third argument as a command.

ShellExecuteA HINSTANCE ShellExecuteA(HWND hwnd,
LPCTSTR lpOperation, LPCTSTR lpFile,
LPCTSTR lpParameters, LPCTSTR
lpDirectory, INT nShowCmd);

{1}

ANSI variant of the ShellExecute() function.

ShellExecuteW HINSTANCE ShellExecuteW(HWND hwnd,
LPCTSTR lpOperation, LPCTSTR lpFile,
LPCTSTR lpParameters, LPCTSTR
lpDirectory, INT nShowCmd);

{1}

Wide-character variant of the ShellExecute() function.

ShellExecuteEx BOOL ShellExecuteEx(LPSHELLEXECUTEINFO
lpExecInfo);

{1}

Executes the argument as a command.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 99

B. Knowledge Base

Table B.11.: Command Injection Vulnerabilities (cont’d)

Name Signature Parameters

ShellExecuteExA BOOL ShellExecuteExA(LPSHELLEXECUTEINFO
lpExecInfo);

{1}

ANSI variant of the ShellExecuteEx() function.

ShellExecuteExW BOOL ShellExecuteExW(LPSHELLEXECUTEINFO
lpExecInfo);

{1}

Wide-character variant of the ShellExecuteEx() function.

String Manipulation Vulnerabilities Unchecked user input is copied into the destination
string buffer. An attacker could trigger a buffer overflow.

Table B.12.: String Manipulation Vulnerabilities

Name Signature Parameters

strcpy char *strcpy(char *dest, const char

*src);
{2}

Copies the src string the dest character array.

stpcpy char *stpcpy(char *dest, const char

*src);
{2}

Copies the src string the dest character array.

strcat char *strcat(char *dest, const char

*src);
{2}

Appends the src string to the dest character array.

wcscpy wchar_t *wcscpy(wchar_t *dest, const
wchar_t *src);

{2}

Wide-character equivalent of the strcpy() function.

wcpcpy wchar_t *wcpcpy(wchar_t *dest, const
wchar_t *src);

{2}

Wide-character equivalent of the stpcpy() function.

wcscat wchar_t *wcscat(wchar_t *dest, const
wchar_t *src);

{2}

Wide-character equivalent of the strcat() function.

100 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.2. Vulnerable Functions

Table B.12.: String Manipulation Vulnerabilities (cont’d)

Name Signature Parameters

strccpy char *strccpy(char *output, const char

*input);
{2}

Copies the input string to the output character array.

strcadd char *strcadd(char *output, const char

*input);
{2}

Copies the input string to the output character array.

strecpy char *strecpy(char *output, const char

*input, const char *exceptions);
{2}

Copies the input string to the output character array.

streadd char *streadd(char *output, const char

*input, const char *exceptions);
{2}

Copies the input string to the output character array.

Memory Allocation Vulnerabilities Unchecked user input is used to determine the size of
memory to allocate. An attacker could exploit an integer overflow to trigger a buffer overflow.

Table B.13.: Memory Allocation Vulnerabilities

Name Signature Parameters

malloc void *malloc(size_t size); {1}

Allocates size bytes and returns a pointer to the allocated memory.

calloc void *calloc(size_t nmemb, size_t
size);

{1,2}

Allocates an array of nmemb elements of size bytes each and returns
a pointer to the allocated memory.

realloc void *realloc(void *ptr, size_t size); {2}

Changes the size of the memory block to size.

valloc void *valloc(size_t size); {1}

Allocates size bytes and returns a pointer to the allocated memory.

memalign void *memalign(size_t boundary, size_t
size);

{2}

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 101

B. Knowledge Base

Table B.13.: Memory Allocation Vulnerabilities (cont’d)

Name Signature Parameters

Allocates size bytes and returns a pointer to the allocated memory.

posix_memalign int posix_memalign(void **memptr,
size_t alignment, size_t size);

{3}

Allocates size bytes and places the address of the allocated memory in
memptr.

alloca void *alloca(size_t size); {1}

Allocates size bytes of space in the stack frame of the caller.

operator new[] void* operator new[] (std::size_t
size) throw (std::bad_alloc);

{1}

Allocates size bytes of memory.

Memory Copy Vulnerabilities Unchecked user input is used to determine the size of the
memory to copy into the destination buffer. An attacker could trigger a buffer overflow.

Table B.14.: Memory Copy Vulnerabilities

Name Signature Parameters

memcpy void *memcpy(void *dest, const void

*src, size_t n);
{3}

Copies n bytes from memory block src to memory block dest.

mempcpy void *mempcpy(void *dest, const void

*src, size_t n);
{3}

Copies n bytes from memory block src to memory block dest.

memmove void *memmove(void *dest, const void

*src, size_t n);
{3}

Copies n bytes from memory block src to memory block dest.

memset void *memset(void *s, int c, size_t
n);

{3}

Fills the first n bytes of the memory area pointed to by s with the
constant byte c.

memccpy void *memccpy(void *dest, const void

*src, int c, size_t n);
{4}

102 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.2. Vulnerable Functions

Table B.14.: Memory Copy Vulnerabilities (cont’d)

Name Signature Parameters

Copies n bytes from memory block src to memory block dest, stopping
when the character c is found.

wmemcpy wchar_t *wmemcpy(wchar_t *dest, const
wchar_t *src, size_t n);

{3}

Wide-character equivalent of the memcpy() function.

wmempcpy wchar_t *wmempcpy(wchar_t *dest, const
wchar_t *src, size_t n);

{3}

Wide-character equivalent of the mempcpy() function.

wmemmove wchar_t *wmemmove(wchar_t *dest, const
wchar_t *src, size_t n);

{3}

Wide-character equivalent of the memmove() function.

wmemset wchar_t *wmemset(wchar_t *wcs, wchar_t
wc, size_t n);

{3}

Wide-character equivalent of the memset() function.

bcopy void bcopy(const void *src, void

*dest, size_t n);
{3}

Copies n bytes from memory block src to memory block dest.

CopyMemory void CopyMemory(PVOID Destination,
const VOID *Source, SIZE_T Length);

{3}

Copies n bytes from memory block Source to memory block Destina-
tion.

MoveMemory void MoveMemory(PVOID Destination,
const VOID *Source, SIZE_T Length);

{3}

Copies n bytes from memory block src to memory block dest.

strlcat size_t strlcat (char *dst, const char*
src, size_t siz);

{3}

Appends the src string to the dest character array of size siz.

strlcpy size_t strlcpy (char* dst, const char*
src, size_t siz);

{3}

Copies the src string to the dest character array of size siz.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 103

B. Knowledge Base

Table B.14.: Memory Copy Vulnerabilities (cont’d)

Name Signature Parameters

strncpy char *strncpy(char *dest, const char

*src, size_t n);
{3}

Copies at most n characters from src to dest.

stpncpy char *stpncpy(char *dest, const char

*src, size_t n);
{3}

Copies at most n characters from src to dest.

strncat char *strncat(char *dest, const char

*src, size_t n);
{3}

Appends at most n characters from src to dest.

wcsncpy wchar_t *wcsncpy(wchar_t *dest, const
wchar_t *src, size_t n);

{3}

Wide-character equivalent of the strncpy() function.

wcpncpy wchar_t *wcpncpy(wchar_t *dest, const
wchar_t *src, size_t n);

{3}

Wide-character equivalent of the stpncpy() function.

wcsncat wchar_t *wcsncat(wchar_t *dest, const
wchar_t *src, size_t n);

{3}

Wide-character equivalent of the strncat() function.

strxfrm size_t strxfrm(char *dest, const char

*src, size_t n);
{3}

Places the first n characters of the transformed string in dest.

snprintf int snprintf(char *str, size_t size,
const char *format, ...);

{2}

Writes at most n characters to the specified character array using a
variable number of arguments for expansion.

vsnprintf int vsnprintf(char *str, size_t size,
const char *format, va_list ap);

{2}

va_list equivalent of the snprintf() function.

swprintf int swprintf(wchar_t *wcs, size_t
maxlen, const wchar_t *format, ...);

{2}

104 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.2. Vulnerable Functions

Table B.14.: Memory Copy Vulnerabilities (cont’d)

Name Signature Parameters

Wide-character equivalent of the snprintf() function.

vswprintf int vswprintf(wchar_t *wcs, size_t
maxlen, const wchar_t *format, va_list
args);

{2}

Wide-character equivalent of the vsnprintf() function.

Configuration Vulnerabilities Unchecked user input is used to set configuration settings.

Table B.15.: Configuration Vulnerabilities

Name Signature Parameters

SetComputerName BOOL WINAPI SetComputerName(LPCTSTR
lpComputerName);

{1}

Sets a new NetBIOS name for the local computer.

SetComputerNameABOOL WINAPI SetComputerNameA(LPCTSTR
lpComputerName);

{1}

ANSI variant of the SetComputerName() function.

SetComputerNameWBOOL WINAPI SetComputerNameW(LPCTSTR
lpComputerName);

{1}

Wide-character variant of the SetComputerName() function.

sethostid int sethostid(long hostid); {1}

Sets a unique 32-bit identifier for the current machine.

Path Traversal Vulnerabilities Unchecked user input is used to construct a pathname.

Table B.16.: Path Traversal Vulnerabilities

Name Signature Parameters

fopen FILE *fopen(const char *path, const
char *mode);

{1}

Opens the file whose name is the string pointed to by path and asso-
ciates a stream with it.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 105

B. Knowledge Base

Table B.16.: Path Traversal Vulnerabilities (cont’d)

Name Signature Parameters

fdopen FILE *fdopen(int fildes, const char

*mode);
{1}

Associates a stream with the existing file descriptor fildes.

freopen FILE *freopen(const char *path, const
char *mode, FILE *stream);

{1}

Opens the file whose name is the string pointed to by path and asso-
ciates the stream pointed to by stream with it.

open int open(const char *pathname, int
flags);

{1}

Establishes the connection between a file and a file descriptor.

wopen {1}

Wide-character equivalent of the open() function.

CreateFile HANDLE WINAPI CreateFile(LPCTSTR
lpFileName, DWORD dwDesiredAccess,
DWORD dwShareMode, LPSECURITY_
ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition, DWORD
dwFlagsAndAttributes, HANDLE
hTemplateFile);

{1}

Creates or opens a file or I/O device.

CreateFileA HANDLE WINAPI CreateFileA(LPCTSTR
lpFileName, DWORD dwDesiredAccess,
DWORD dwShareMode, LPSECURITY_
ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition, DWORD
dwFlagsAndAttributes, HANDLE
hTemplateFile);

{1}

Character equivalent of the CreateFile() function.

106 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

B.2. Vulnerable Functions

Table B.16.: Path Traversal Vulnerabilities (cont’d)

Name Signature Parameters

CreateFileW HANDLE WINAPI CreateFileW(LPCTSTR
lpFileName, DWORD dwDesiredAccess,
DWORD dwShareMode, LPSECURITY_
ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition, DWORD
dwFlagsAndAttributes, HANDLE
hTemplateFile);

{1}

Wide-character equivalent of the CreateFile() function.

remove int remove(const char * filename); {1}

Deletes the file whose name is specified in filename.

rename int rename(const char *oldname, const
char *newname);

{1}

Changes the name of the file or directory specified by oldname to
newname.

Process Control Vulnerabilities Unchecked user input is used to determine which library
is loaded.

Table B.17.: Process Control Vulnerabilities

Name Signature Parameters

LoadLibrary HMODULE WINAPI LoadLibrary(LPCTSTR
lpFileName);

{1}

Loads the specified module into the address space of the calling process.

LoadLibraryA HMODULE WINAPI LoadLibraryA(LPCTSTR
lpFileName);

{1}

ANSI variant of the LoadLibrary() function.

LoadLibraryW HMODULE WINAPI LoadLibraryW(LPCTSTR
lpFileName);

{1}

Wide-character variant of the LoadLibrary() function.

LoadLibraryEx HMODULE WINAPI LoadLibraryEx(LPCTSTR
lpFileName, HANDLE hFile, DWORD
dwFlags);

{1}

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 107

B. Knowledge Base

Table B.17.: Process Control Vulnerabilities (cont’d)

Name Signature Parameters

Loads the specified module into the address space of the calling process.

LoadLibraryExA HMODULE WINAPI LoadLibraryExA(LPCTSTR
lpFileName, HANDLE hFile, DWORD
dwFlags);

{1}

ANSI variant of the LoadLibraryEx() function.

LoadLibraryExW HMODULE WINAPI LoadLibraryExW(LPCTSTR
lpFileName, HANDLE hFile, DWORD
dwFlags);

{1}

Wide-character variant of the LoadLibraryEx() function.

AfxLoadLibrary HINSTANCE AFXAPI AfxLoadLibrary(LPCTSTR
lpszModuleName);

{1}

Maps a DLL module.

Search Path Vulnerabilities Unchecked user input is used to construct the search path.

Table B.18.: Search Path Vulnerabilities

Name Signature Parameters

putenv int putenv(char *string); {1}

Adds or changes the value of environment variables.

wputenv int wputenv(wchar *string); {1}

Wide-character equivalent of the putenv() function.

setenv int setenv(const char *name, const
char *value, int overwrite);

{1}

Adds or changes the value of the environment variable with name
name to value.

108 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

C. Details for the Evaluation

This appendix contains additional information related to the evaluation in Chapter 8. The
table lists all data flow variants of the SATE IV benchmark and names the associated data
flow constructs.

C.1. Data Flow Variants

The SATE IV benchmark uses 68 different flow variants of which 40 are used in test cases
of the weaknesses I selected for the evaluation. Variants 1-33 are intra-procedural whereas
variants 41-68 involve at least two different functions.

Table C.1.: SATE IV Data Flow Variants

Variant Description

1 Baseline

2 if(1) and if(0)

3 if(5==5) and if(5!=5)

4 if(static_const_t) and if(static_const_f)

5 if(static_t) and if(static_f)

6 if(static_const_five==5) and if(static_const_five!=5)

7 if(static_five==5) and if(static_five!=5)

8 if(static_returns_t()) and if(static_returns_f())

9 if(global_const_t) and if(global_const_f)

10 if(global_t) and if(global_f)

11 if(global_returns_t()) and if(global_returns_f())

12 if(global_returns_t_or_f())

13 if(global_const_five==5) and if(global_const_five!=5)

14 if(global_five==5) and if(global_five!=5)

15 switch(6)

16 while(1) and while(0)

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 109

C. Details for the Evaluation

Table C.1.: SATE IV Data Flow Variants (cont’d)

Variant Description

17 For loops

18 Goto statements

19 Dead code after a return

31 Using a copy of data within the same function

32 Using two pointers to the same value within the same function

33 Use of a C++ reference to data within the same function

34 Use of a union containing two methods of accessing the same data (within the
same function)

41 Data passed as an argument from one function to another in the same source
file

42 Data returned from one function to another in the same source file

43 Data flows using a C++ reference from one function to another in the same
source file

44 Data passed as an argument from one function to a function in the same source
file called via a function pointer

45 Data passed as a static global variable from one function to another in the same
source file

51 Data passed as an argument from one function to another in different source
files

52 Data passed as an argument from one function to another to another in three
different source files

53 Data passed as an argument from one function through two others to a fourth;
all four functions are in different source files

54 Data passed as an argument from one function through three others to a fifth;
all five functions are in different source files

61 Data returned from one function to another in different source files

62 Data flows using a C++ reference from one function to another in different
source files

63 Pointer to data passed from one function to another in different source files

64 Void pointer to data passed from one function to another in different source
files

110 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

C.1. Data Flow Variants

Table C.1.: SATE IV Data Flow Variants (cont’d)

Variant Description

65 Data passed as an argument from one function to a function in a different source
file called via a function pointer

66 Data passed in an array from one function to another in different source files

67 Data passed in a struct from one function to another in different source files

68 Data passed as a global variable from one function to another in different source
files

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 111

Bibliography

[ACD+76] R.P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigsford, S. Takubo, and D. A.
Webb. Security analysis and enhancements of computer operating systems. Final
Report NBSIR 76-1041, Institute for Computer Sciences and Technology, National
Bureau of Standards, Washington, District of Columbia, United States, April 1976.
10–26 pp.

[BAMP81] Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The temporal logic of
branching time. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’81, pages 164–176. ACM, 1981.

[Bla05] Paul E. Black. Software assurance metrics and tool evaluation. International Con-
ference on Software Engineering Research and Practice (SERP), June 2005.

[Bla07] Paul E. Black. SAMATE and evaluating static analysis tools. Ada User Journal,
28(3):184–188, June 2007.

[Bla09] Paul E. Black. Static analyzers in software engineering. CrossTalk, 22(3):16–17,
March 2009.

[BM09] David Basin and Ueli Maurer. Information security. Lecture notes, ETH Zurich,
2009.

[CKSY05] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SA-
TABS: SAT-based predicate abstraction for ANSI-C. In TACAS, LNCS 3440,
pages 570–574. Springer, 2005.

[CM04] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security and
Privacy, 2(6):76–79, November 2004.

[Cou81] Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick and
N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10,
pages 303–342. Prentice-Hall, Englewood Cliffs, New Jersey, United States, 1981.

[CSL08] Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible security
enforcement using dynamic data flow analysis. In Proceedings of the 15th ACM
Conference on Computer and Communications Security, CCS ’08, pages 39–50.
ACM, October 2008.

[CW02] Hao Chen and David Wagner. MOPS: an infrastructure for examining security
properties of software. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, CCS ’02, pages 235–244. ACM, 2002.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 113

Bibliography

[EGHT94] David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: A tool
for using specifications to check code. In Proceedings of the 2nd ACM SIGSOFT
Symposium on Foundations of Software Engineering, SIGSOFT ’94, pages 87–96.
ACM, December 1994.

[EL02] David Evans and David Larochelle. Improving security using extensible lightweight
static analysis. IEEE Software, pages 42–51, February 2002.

[FFA99] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type qual-
ifiers. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation, PLDI ’99, pages 192–203. ACM, May 1999.

[FHJ+07] Ansgar Fehnker, Ralf Huuck, Patrick Jayet, Michel Lussenburg, and Felix Rauch.
Model checking software at compile time. In Proceedings of the First Joint IEEE/I-
FIP Symposium on Theoretical Aspects of Software Engineering, pages 45–56. IEEE
Computer Society, 2007.

[FHS10] Ansgar Fehnker, Ralf Huuck, and Sean Seefried. Counterexample guided path
reduction for static program analysis. In Concurrency, Compositionality, and Cor-
rectness, volume 5930 of LNCS, pages 322–341. Springer, 2010.

[GL03] Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In Proceedings
of the 10th International Conference on Static Analysis, SAS ’03, pages 214–236.
Springer, 2003.

[HCF05] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propagation for
Java. In Proceedings of the 21st Annual Computer Security Applications Conference,
pages 303–311. IEEE Computer Society, 2005.

[HJMS03] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Soft-
ware verification with BLAST. In Proceedings of the 10th International Conference
on Model Checking Software, SPIN ’03, pages 235–239. Springer-Verlag, 2003.

[HLV05] Michael Howard, David LeBlanc, and John Viega. 19 Deadly Sins of Software
Security. McGraw-Hill Osborne Media, July 2005.

[HLV09] Michael Howard, David LeBlanc, and John Viega. 24 Deadly Sins of Software
Security: Programming Flaws and How to Fix Them. McGraw-Hill Osborne Media,
September 2009.

[JKK06] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Precise alias analysis
for static detection of web application vulnerabilities. In Proceedings of the 2006
Workshop on Programming Languages and Analysis for Security, PLAS ’06, pages
27–36. ACM, June 2006.

[Kau87] Christa Kaufmann. Univerum: Universal verification using model checking. Inter-
national Research Journal of Applied Life Sciences, pages 9–29, September 1987.

114 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

Bibliography

[Kil73] Gary A. Kildall. A unified approach to global program optimization. In Pro-
ceedings of the 1st annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’73, pages 194–206. ACM, 1973.

[Kra05] Kendra June Kratkiewicz. Evaluating static analysis tools for detecting buffer
overflows in c code. Master’s thesis, Harvard University, March 2005.

[Kri63] Saul Kripke. Semantical considerations on modal logic. In Acta Philosophica Fen-
nica, volume 16, pages 83–94. Philosophical Society of Finland, 1963.

[LBMC94] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi. A
taxonomy of computer program security flaws. ACM Computing Surveys, 26(3):
211–254, September 1994.

[LE01] David Larochelle and David Evans. Statically detecting likely buffer overflow vul-
nerabilities. In Proceedings of the 10th USENIX Security Symposium, volume 10 of
SSYM ’01, pages 177–189. USENIX Association, 2001.

[LL03] V. Benjamin Livshits and Monica S. Lam. Tracking pointers with path and con-
text sensitivity for bug detection in C programs. In Proceedings of the 9th European
Software Engineering Conference held jointly with 10th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ESEC/FSE ’03, pages
317–326. ACM, September 2003.

[LL05] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in Java
applications with static analysis. In Proceedings of the 14th USENIX Security
Symposium, volume 14. USENIX Association, 2005.

[MdR99] Todd C. Miller and Theo de Raadt. strlcpy and strlcat—consistent, safe, string
copy and concatenation. In Proceedings of the FREENIX Track: 1999 USENIX
Annual Technical Conference. USENIX Association, June 1999.

[Mit11a] Mitre Corporation. Common vulnerabilities and exposures. Website, November
2011.
See: http://cve.mitre.org/.

[Mit11b] Mitre Corporation. Common weakness enumeration. Website, June 2011.
See: http://cwe.mitre.org/.

[Nat11a] National Institute of Standards and Technology. Common weakness enumeration.
Website, June 2011.
See: http://nvd.nist.gov/cwe.cfm.

[Nat11b] National Institute of Standards and Technology. Standard reference dataset. Web-
site, March 2011.
See: http://samate.nist.gov/SRD/.

[New00] Tim Newsham. Format string attacs. Online, September 2000.
See: http://www.thenewsh.com/~newsham/format-string-attacks.pdf.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 115

http://cve.mitre.org/
http://cwe.mitre.org/
http://nvd.nist.gov/cwe.cfm
http://samate.nist.gov/SRD/
http://www.thenewsh.com/~newsham/format-string-attacks.pdf

Bibliography

[NIC11] NICTA. The Goanna Project. Website, November 2011.
See http://www.nicta.com.au/research/projects/goanna/.

[NNH05] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, second edition, 2005.

[SAB10] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted
to know about dynamic taint analysis and forward symbolic execution. In Proceed-
ings of the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 317–331.
IEEE Computer Society, 2010.

[Sec11] Secure Software, Inc. Rough auditing tool for security (RATS). Website, November
2011.
See: https://www.fortify.com/ssa-elements/threat-intelligence/rats.html.

[SM11] SANS Institute and Mitre Corporation. CWE/SANS top 25 most dangerous soft-
ware errors. Website, November 2011.
See: http://www.sans.org/top25-software-errors/.

[Soc90] IEEE Computer Society. IEEE standard glossary of software engineering terminol-
ogy. IEEE Standard, 1990.
See: http://standards.ieee.org/findstds/standard/610.12-1990.html.

[Sot05] Alexander Ivanov Sotirov. Automatic vulnerability detection using static source
code analysis. Master’s thesis, University of Alabama, Tuscaloosa, Alabama, United
States, 2005.

[STFW01] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detect-
ing format string vulnerabilities with type qualifiers. In Proceedings of the 10th
USENIX Security Symposium, pages 201–216. USENIX Association, August 2001.

[TCM05] Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious kingdoms:
A taxonomy of software security errors. to be published in Proceedings of the
NIST Workshop on Software Security Assurance Tools, Techniques, and Metrics
(SSATTM), 2005.

[Tur37] Alan Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, Series 2, 42:230–
265, 1937.

[US-00] US-CERT: United States Computer Emergency Readiness Team. CERT Advisory
CA-2000-13: Two input validation problems in FTPD. Website, July 2000.
See http://www.cert.org/advisories/CA-2000-13.html.

[US-11] US-CERT: United States Computer Emergency Readiness Team. Microsoft Win-
dows based applications may insecurely load dynamic libraries. Website, November
2011.
See: http://www.kb.cert.org/vuls/id/707943.

116 Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection

http://www.nicta.com.au/research/projects/goanna/
https://www.fortify.com/ssa-elements/threat-intelligence/rats.html
http://www.sans.org/top25-software-errors/
http://standards.ieee.org/findstds/standard/610.12-1990.html
http://www.cert.org/advisories/CA-2000-13.html
http://www.kb.cert.org/vuls/id/707943

Bibliography

[VBKM00] John Viega, Jon-Thomas Bloch, Yoshi Kohno, and Gary McGraw. ITS4: A static
vulnerability scanner for C and C++ code. In Proceedings of the 16th Annual
Computer Security Applications Conference, ACSAC ’00, pages 257–267. IEEE
Computer Society, December 2000.

[Vie05] John Viega. The CLASP Application Security Process. Secure Software, Inc., 2005.

[WFBA00] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first
step towards automated detection of buffer overrun vulnerabilities. In Proceedings
of the 7th Networking and Distributed System Security Symposium, pages 3–17.
Internet Society (ISOC), February 2000.

[Whe11] David A. Wheeler. Flawfinder. Website, November 2011.
See: http://www.dwheeler.com/flawfinder/.

[XCE03] Yichen Xie, Andy Chou, and Dawson Engler. ARCHER: Using symbolic, path-
sensitive analysis to detect memory access errors. In Proceedings of the 9th European
Software Engineering Conference held jointly with 10th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ESEC/FSE ’03, pages
327–336. ACM, 2003.

[ZLL04] Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis tools using
exploitable buffer overflows from open source code. In Proceedings of the 12th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ’04, pages 97–106. ACM, 2004.

Merging Static Analysis and Model Checking for Improved Security Vulnerability Detection 117

http://www.dwheeler.com/flawfinder/

	Acknowledgements
	Abstract
	Introduction
	Security
	Objectives
	Measures

	My Approach
	Integration with Goanna
	Contributions

	Static Program Analysis
	Areas of Application
	Discussion

	Outlook

	Related Work
	Static Program Analysis for Security
	Basic Lexical Analysis
	Annotation-based Analysis
	Constraint-based Analysis
	Type-based Analysis
	Data Flow Analysis
	Model Checking

	Comparison
	Precision
	Scope
	Sensitivity

	Security Vulnerabilities
	Taxonomies
	Taxonomy of Integrity Flaws (1976)
	A Taxonomy of Computer Program Security Flaws (1994)
	The 19 Deadly Sins of Software Security (2005)
	Seven Pernicious Kingdoms (2005)
	Common Weakness Enumeration Specification (2005)
	Software Assurance Metrics and Tool Evaluation (2005)

	Targeted Weaknesses
	CWE 22: Path Traversal
	CWE 78: OS Command Injection
	CWE 114: Process Control
	CWE 129: Improper Validation of Array Index
	CWE 134: Uncontrolled Format String
	CWE 427: Uncontrolled Search Path Element
	CWE 789: Uncontrolled Memory Allocation

	Background
	Data Flow Analysis
	Reaching Definitions Analysis
	Very Busy Expressions Analysis
	Monotone Frameworks
	Work List Algorithm
	Limitations

	Syntactic Model Checking
	Kripke Structures
	Computational Tree Logic
	Example Program
	Limitations

	Architecture
	Preprocessing
	Data Flow Analysis
	Model Checking

	Intra-procedural Analysis
	Running Example
	Data Flow Analysis
	Finding Tainted Sources
	Propagating Taints
	Locating Vulnerabilities

	Model Checking
	Generating the Model
	Defining Vulnerabilities as CTL Properties
	Presenting Counter-Examples

	Improvements
	Value Range Validation
	Abstraction Refinement

	Inter-procedural Analysis
	Running Example
	Finding Sources and Sinks
	Source Analysis
	Sink Analysis

	Extended Taint Analysis
	Propagating Taints
	Locating Vulnerabilities
	Presenting Counter-Examples

	Evaluation
	Sate IV Benchmark
	Test Case Design
	Preliminary Results

	Runtime Performance
	Dovecot 1.2.0
	Vim 7.3
	Ghostscript 9.02
	Wireshark 1.2.0

	Bugs in Real Software
	muh 2.05d
	wu-ftpd 2.6.0
	CFEngine 1.5.x

	Tool Comparison
	ITS4, RATS, Flawfinder
	cqual
	Vulncheck
	Goanna

	Conclusion
	Contributions
	Related Work
	Future Work

	Terminology
	Knowledge Base
	User Input Functions
	Vulnerable Functions

	Details for the Evaluation
	Data Flow Variants

	Bibliography

